Lucian Octav Copolovici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4528123/publications.pdf

Version: 2024-02-01

92 papers 3,755 citations

172386 29 h-index 59 g-index

94 all docs 94 docs citations 94 times ranked

4286 citing authors

#	Article	IF	CITATIONS
1	Silver Nanoparticles Mediated by Natural Extracts Recovered from Wastes and By-Products. , 2022, 7, .		О
2	Biomolecules from Plant Wastes Potentially Relevant in the Management of Irritable Bowel Syndrome and Co-Occurring Symptomatology. Molecules, 2022, 27, 2403.	1.7	2
3	The Influence of Elevated CO2 on Volatile Emissions, Photosynthetic Characteristics, and Pigment Content in Brassicaceae Plants Species and Varieties. Plants, 2022, 11, 973.	1.6	5
4	Salvia officinalis L. Essential Oil: Characterization, Antioxidant Properties, and the Effects of Aromatherapy in Adult Patients. Antioxidants, 2022, 11, 808.	2.2	18
5	The effect of 100–200Ânm ZnO and TiO2 nanoparticles on the in vitro-grown soybean plants. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112536.	2.5	15
6	Heritage Building Preservation in the Process of Sustainable Urban Development: The Case of Brasov Medieval City, Romania. Sustainability, 2022, 14, 6959.	1.6	13
7	Influence of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) on Photosynthetic Parameters and Secondary Metabolites of Plants from Fabaceae Family. Applied Sciences (Switzerland), 2022, 12, 6326.	1.3	1
8	Antagonist Temperature Variation Affects the Photosynthetic Parameters and Secondary Metabolites of Ocimum basilicum L. and Salvia officinalis L Plants, 2022, 11, 1806.	1.6	6
9	Volatile organic compound emission and residual substances from plants in light of the globally increasing CO2 level. Current Opinion in Environmental Science and Health, 2021, 19, 100216.	2.1	6
10	Biotransformation of Non-steroidal Anti-inflammatory Drugs Induces Ultrastructural Modifications in Green Leafy Vegetables. Journal of Soil Science and Plant Nutrition, 2021, 21, 1408-1420.	1.7	1
11	The Seasonality Impact of the BTEX Pollution on the Atmosphere of Arad City, Romania. International Journal of Environmental Research and Public Health, 2021, 18, 4858.	1.2	13
12	Induced Volatile Emissions, Photosynthetic Characteristics, and Pigment Content in Juglans regia Leaves Infected with the Erineum-Forming Mite Aceria erinea. Forests, 2021, 12, 920.	0.9	4
13	Chemical Profile, Antioxidant Capacity, and Antimicrobial Activity of Essential Oils Extracted from Three Different Varieties (Moldoveanca 4, Vis Magic 10, and Alba 7) of Lavandula angustifolia. Molecules, 2021, 26, 4381.	1.7	24
14	Content of Carotenoids, Violaxanthin and Neoxanthin in Leaves of Triticum aestivum Exposed to Persistent Environmental Pollutants. Molecules, 2021, 26, 4448.	1.7	1
15	Green Synthesis, Characterization, and Antibacterial Properties of Silver Nanoparticles Obtained by Using Diverse Varieties of Cannabis sativa Leaf Extracts. Molecules, 2021, 26, 4041.	1.7	29
16	Antimicrobial Potential and Phytochemical Profile of Wild and Cultivated Populations of Thyme (Thymus sp.) Growing in Western Romania. Plants, 2021, 10, 1833.	1.6	10
17	The Effect of Antagonist Abiotic Stress on Bioactive Compounds from Basil (Ocimum basilicum). Applied Sciences (Switzerland), 2021, 11, 9282.	1.3	13
18	Onion (<i>Allium cepa</i> L.) peel extracts characterization by conventional and modern methods. International Journal of Food Engineering, 2021, 17, 485-493.	0.7	9

#	Article	IF	CITATIONS
19	Human-Plant Symbiosis by Integrated Roof-Top Greenhouses. Advances in Intelligent Systems and Computing, 2021, , 76-83.	0.5	0
20	Chemical and Biochemical Characterization of Essential Oils and Their Corresponding Hydrolats from Six Species of the Lamiaceae Family. Plants, 2021, 10, 2489.	1.6	25
21	Green Synthesis, Characterization and Test of MnO2 Nanoparticles as Catalyst in Biofuel Production from Grape Residue and Seeds Oil. Waste and Biomass Valorization, 2020, 11, 5003-5013.	1.8	24
22	Investigation on High-Value Bioactive Compounds and Antioxidant Properties of Blackberries and Their Fractions Obtained by Home-Scale Juice Processing. Sustainability, 2020, 12, 5681.	1.6	9
23	Chemical composition, antioxidant capacity, and thermal behavior of Satureja hortensis essential oil. Scientific Reports, 2020, 10, 21322.	1.6	29
24	The Antioxidant Profile Evaluation of Some Tomato Landraces with Soil Salinity Tolerance Correlated with High Nutraceuticaland Functional Value. Agronomy, 2020, 10, 500.	1.3	28
25	Investigating the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on the composition and ultrastructure of green leafy vegetables with important nutritional values. Plant Physiology and Biochemistry, 2020, 151, 342-351.	2.8	13
26	Camelina sativa Methanolic and Ethanolic Extract Potential in Alleviating Oxidative Stress, Memory Deficits, and Affective Impairments in Stress Exposure-Based Irritable Bowel Syndrome Mouse Models. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	1.9	12
27	Beneficial effects of Camelina sativa oil on behavioural (memory, anxiety, depression and) Tj ETQq1 1 0.784314 rgi syndrome. Romanian Biotechnological Letters, 2020, 25, 1532-1540.		ck 10 Tf 50 7
28	Variations in the Chemical Composition of the Essential Oil of Lavandula angustifolia Mill., Moldoveanca 4 Romanian Variety. Revista De Chimie (discontinued), 2020, 71, 307-315.	0.2	3
29	Impact Assessment of Acetaminophen (paracetamol) on Phaseolus vulgaris L. and Triticum aestivum L. Plants. Revista De Chimie (discontinued), 2020, 71, 549-557.	0.2	O
30	Determination of changes in the microbial and chemical composition of Èšaga cheese during maturation. PLoS ONE, 2020, 15, e0242824.	1.1	6
31	Paenibacillus polymyxa biofilm polysaccharides antagonise Fusarium graminearum. Scientific Reports, 2019, 9, 662.	1.6	37
32	Reaction of imidazoline-2-selone derivatives with mesityltellurenyl iodide: a unique example of a 3c-4e Seâ†'Teâ†6e three-body system embedding a tellurenyl cation. New Journal of Chemistry, 2019, 43, 11821-11831.	1.4	7
33	Evaluation of the photosynthetic parameters, emission of volatile organic compounds and ultrastructure of common green leafy vegetables after exposure to non-steroidal anti-inflammatory drugs (NSAIDs). Ecotoxicology, 2019, 28, 631-642.	1.1	14
34	FATTY ACIDS PROFILE AND ANTIOXIDANT ACTIVITY OF ALMOND OILS OBTAINED FROM SIX ROMANIAN VARIETIES. Farmacia, 2019, 67, 882-887.	0.1	13
35	Variation of the Chemical Composition of Thymus Vulgaris Essential Oils by Phenological Stages. Revista De Chimie (discontinued), 2019, 70, 633-637.	0.2	13
36	Diterpenoid fingerprints in pine foliage across an environmental and chemotypic matrix: Isoabienol content is a key trait differentiating chemotypes. Phytochemistry, 2018, 147, 80-88.	1.4	7

#	ARTICLE	IF	CITATIONS
37	Changes in photosynthetic rate and stress volatile emissions through desiccationâ€rehydration cycles in desiccationâ€tolerant epiphytic filmy ferns (<scp>Hymenophyllaceae</scp>). Plant, Cell and Environment, 2018, 41, 1605-1617.	2.8	22
38	The influence of high-temperature heating on composition and thermo-oxidative stability of the oil extracted from Arabica coffee beans. PLoS ONE, 2018, 13, e0200314.	1.1	20
39	Essential Oil Composition, Total Phenolic Content, and Antioxidant Activity - Determined from Leaves, Flowers and Stems of Origanum Vulgare L. Var. Aureum. "Agriculture for Life Life for Agriculture― Conference Proceedings, 2018, 1, 555-561.	0.1	6
40	Composition and Antioxidant Activity of Aqueous Extracts Obtained from Herb of Tansy (Tanacetum) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
41	HPLC-UV Method for Determination of Famotidine from Pharmaceutical Products. Revista De Chimie (discontinued), 2018, 69, 297-299.	0.2	5
42	Disproportionate photosynthetic decline and inverse relationship between constitutive and induced volatile emissions upon feeding of Quercus robur leaves by large larvae of gypsy moth (Lymantria) Tj ETQq0 0 0 0	rgBI.ØOver	lo chs 10 Tf 50
43	The influence of soil salinity on volatile organic compounds emission and photosynthetic parameters of Solanum lycopersicum L. varieties. Open Life Sciences, 2017, 12, 135-142.	0.6	21
44	New Method for Simultaneous Determination of Ascorbic and Acetylsalicylic Acids in Effervescent Tablets. Revista De Chimie (discontinued), 2017, 68, 2495-2598.	0.2	4
45	The Fatty Acids Composition and Antioxidant Activity of Walnut Cold Press Oil. Revista De Chimie (discontinued), 2017, 68, 507-509.	0.2	27
46	1H-NMR Study of Famotidine and Nizatidine Complexes with b-cyclodextrin. Revista De Chimie (discontinued), 2017, 68, 1170-1173.	0.2	2
47	Diclofenac Influence on Photosynthetic Parameters and Volatile Organic Compounds Emision from Phaseolus vulgaris L.Plants. Revista De Chimie (discontinued), 2017, 68, 2076-2078.	0.2	20
48	How specialized volatiles respond to chronic and shortâ€term physiological and shock heat stress in ⟨i⟩Brassica nigra⟨ i⟩. Plant, Cell and Environment, 2016, 39, 2027-2042.	2.8	55
49	Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum. Science of the Total Environment, 2016, 569-570, 489-495.	3.9	14
50	Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity. Environmental Science & Enhanced, 2016, 50, 11501-11510.	4.6	34
51	Environmental Impacts on Plant Volatile Emission. Signaling and Communication in Plants, 2016, , 35-59.	0.5	40
52	Toxic Influence of Key Organic Soil Pollutants on the Total Flavonoid Content in Wheat Leaves. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	15
53	Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynthesis Research, 2015, 123, 183-201.	1.6	80
54	A Comparison of a New Method Mediated by Molybdenum Complex with an Enzymatic Method for Bleaching Flax Fibers. Journal of Natural Fibers, 2015, 12, 378-387.	1.7	9

#	Article	IF	Citations
55	Bias in leaf dry mass estimation after oven-drying isoprenoid-storing leaves. Trees - Structure and Function, 2015, 29, 1805-1816.	0.9	11
56	Temperature dependencies of Henry's law constants for different plant sesquiterpenes. Chemosphere, 2015, 138, 751-757.	4.2	22
57	Drought-Tolerance of Wheat Improved by Rhizosphere Bacteria from Harsh Environments: Enhanced Biomass Production and Reduced Emissions of Stress Volatiles. PLoS ONE, 2014, 9, e96086.	1.1	506
58	Gas Chromatography–Mass Spectrometry Method for Determination of Biogenic Volatile Organic Compounds Emitted by Plants. Methods in Molecular Biology, 2014, 1153, 161-169.	0.4	52
59	Oak powdery mildew (Erysiphe alphitoides)-induced volatile emissions scale with the degree of infection in Quercus robur. Tree Physiology, 2014, 34, 1399-1410.	1.4	54
60	Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environmental and Experimental Botany, 2014, 100, 55-63.	2.0	105
61	Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants. Journal of Plant Physiology, 2014, 171, 1436-1443.	1.6	31
62	Isoprenoid emissions, photosynthesis and mesophyll diffusion conductance in response to blue light. Environmental and Experimental Botany, 2013, 95, 50-58.	2.0	25
63	Diffuse Water Pollution by Anthraquinone and Azo Dyes in Environment Importantly Alters Foliage Volatiles, Carotenoids and Physiology in Wheat (Triticum aestivum). Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	66
64	Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: Leaf volatiles as a promising new tool to assess toxicity. Ecotoxicology and Environmental Safety, 2013, 87, 70-79.	2.9	76
65	Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Protection, 2013, 43, 79-88.	1.0	68
66	Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Frontiers in Plant Science, 2013, 4, 262.	1.7	205
67	Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. Journal of Experimental Botany, 2013, 64, 2269-2281.	2.4	348
68	Highly variable chemical signatures over short spatial distances among Scots pine (Pinus sylvestris) populations. Tree Physiology, 2013, 33, 374-387.	1.4	26
69	Extraction and GC determination of volatile aroma compounds from extracts of three plant species of the Apiaceae family. AIP Conference Proceedings, 2013, , .	0.3	5
70	Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest. Atmospheric Chemistry and Physics, 2012, 12, 3909-3926.	1.9	46
71	Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO ₂ concentration. Global Change Biology, 2012, 18, 3423-3440.	4.2	54
72	Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. Journal of Plant Physiology, 2012, 169, 664-672.	1.6	161

#	Article	IF	Citations
73	Can the capacity for isoprene emission acclimate to environmental modifications during autumn senescence in temperate deciduous tree species Populus tremula?. Journal of Plant Research, 2012, 125, 263-274.	1.2	39
74	Ecosystem-scale biosphere–atmosphere interactions of a hemiboreal mixed forest stand at Jävselja, Estonia. Forest Ecology and Management, 2011, 262, 71-81.	1.4	31
75	Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences, 2011, 8, 2209-2246.	1.3	166
76	Volatile Emissions from Alnus glutionosa Induced by Herbivory are Quantitatively Related to the Extent of Damage. Journal of Chemical Ecology, 2011, 37, 18-28.	0.9	110
77	Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta, 2010, 232, 235-243.	1.6	88
78	Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant, Cell and Environment, 2010, 33, no-no.	2.8	97
79	High within anopy variation in isoprene emission potentials in temperate trees: Implications for predicting canopyâ€scale isoprene fluxes. Journal of Geophysical Research, 2010, 115, .	3.3	46
80	Postillumination Isoprene Emission: In Vivo Measurements of Dimethylallyldiphosphate Pool Size and Isoprene Synthase Kinetics in Aspen Leaves. Plant Physiology, 2009, 149, 1609-1618.	2.3	86
81	Characterization of Atmospheric Aerosols at a Forested Site in Central Europe. Environmental Science &	4.6	100
82	Foliar limonene uptake scales positively with leaf lipid content: "nonâ€emitting―species absorb and release monoterpenes. Plant Biology, 2008, 10, 129-137.	1.8	38
83	Salting-in and salting-out effects of ionic and neutral osmotica on limonene and linalool Henry's law constants and octanol/water partition coefficients. Chemosphere, 2007, 69, 621-629.	4.2	22
84	Iodidomesityltellurium(II) iodidotrimesitylditellurium(II)(<i>Te—Te</i>). Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o528-o529.	0.4	3
85	Hydrogen bis(tetraphenylimidodiphospinic acid) triiodide. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, 04206-04207.	0.2	2
86	1-Bromo-2,6-bis(4-methylpiperazin-1-ylmethyl)benzene. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4323-o4323.	0.2	2
87	1-Bromo-2,6-bis(<i>N</i> -morpholinylmethyl)benzene. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4570-o4570.	0.2	3
88	A kinetic method for para-nitrophenol determination based on its inhibitory effect on the catalatic reaction of catalase. Open Chemistry, 2005, 3, 592-604.	1.0	1
89	The Capacity for Thermal Protection of Photosynthetic Electron Transport Varies for Different Monoterpenes in Quercus ilex. Plant Physiology, 2005, 139, 485-496.	2.3	118
90	Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids. Chemosphere, 2005, 61, 1390-1400.	4.2	98

ı	#	Article	IF	CITATIONS
	91	Kinetic method for acetylsalicylic acid determination based on its inhibitory effect upon the catalytic decomposition of H 2 O 2. Analytical and Bioanalytical Chemistry, 2004, 378, 1868-1872.	1.9	4
	92	Kinetic determination of aromatic amines at millimolar level. Analytical and Bioanalytical Chemistry, 2002, 374, 13-16.	1.9	4