Fabio Bagarello

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/4528070/publications.pdf
Version: 2024-02-01

A Swanson-like Hamiltonian and the inverted harmonic oscillator. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 225204.
2.15

Bi-coherent states as generalized eigenstates of the position and the momentum operators. Zeitschrift
Fur Angewandte Mathematik Und Physik, 2022, 73, .
1.4

Some results on the rotated infinitely deep potential and its coherent states. Physica A: Statistical Mechanics and Its Applications, 2021, 564, 125565.
2.61

5 Coupled Susy, pseudo-bosons and a deformed su(1,1) Lie algebra. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 145201.

Topological Decompositions of the Pauli Group and their Influence on Dynamical Systems.
Mathematical Physics Analysis and Geometry, 2021, 24, 1.
$1.0 \quad 2$

A chain of solvable non-Hermitian Hamiltonians constructed by a series of metric operators. Annals
2.8

6
A chain of solvable non-Hermitia
of Physics, 2021, 430, 168511.

Pseudo-bosons and bi-coherent states out of â,,'2(â,,). Journal of Physics: Conference Series, 2021, 2038, 012001.
0.48

9 Hamiltonians Generated by Parseval Frames. Acta Applicandae Mathematicae, 2021, $171,1$.
1.0

2

One-directional quantum mechanical dynamics and an application to decision making. Physica A:
Statistical Mechanics and Its Applications, 2020, 537, 122739.

11 Spreading of Competing Information in a Network. Entropy, 2020, 22, 1169.
$2.2 \quad 12$

12 Modeling epidemics through ladder operators. Chaos, Solitons and Fractals, 2020, 140, 110193.
5.1

3

Bicoherent-state path integral quantization of a non-hermitian hamiltonian. Annals of Physics, 2020,
422,168313 . 422, 168313.
$\begin{array}{ll}2.8 & 7\end{array}$

Gibbs States, Algebraic Dynamics and Generalized Riesz Systems. Complex Analysis and Operator Theory, 2020, 14, 1.

Some remarks on few recent results on the damped quantum harmonic oscillator. Annals of Physics, 2020, 414, 168091.

```
19 Generalized Riesz Systems and Quasi Bases in Hilbert Space. Mediterranean Journal of Mathematics,
2020, 17, 1.
```

20 Generalized Riesz systems and orthonormal sequences in Krein spaces. Journal of Physics A:
2.13

Mathematical and Theoretical, 2020, 53, 085202.
21 Fourier transforms, fractional derivatives, and a little bit of quantum mechanics. Rocky Mountain
Journal of Mathematics, 2020, 50, .
$0.4 \quad 3$

Tridiagonality, supersymmetry and non self-adjoint Hamiltonians. Journal of Physics A: Mathematical

A no-go result for the quantum damped harmonic oscillator. Physics Letters, Section A: General,
2.1

14
A no-go result for the quantum damped harmonic oscilla
Atomic and Solid State Physics, 2019, 383, 2836-2838.

24 Why a Quantum Tool in Classical Contexts? (Part II). , 2019, , 1-4.

25 Some Preliminaries. , 2019, , 7-56.

26 Desertification. , 2019, , 113-140.
0

27 Escape Strategies. , 2019, , 141-167.

28 Closed Ecosystems. , 2019, , 168-193.

29 More on Biological Systems. , 2019, , 194-205.

30 Quantum Game of Life and Its (H, Ï-lnduced Dynamics. , 2019, , 206-216.
0

31 Prehistoric Data Mining. , 2019, , 217-233.
0

32 A Simple Model of Information in Stock Markets. , 2019, , 234-249.
0

33 Decision-Making Driven by the Environment. , 2019, , 250-266.
0

34 Compatible and Incompatible Questions. , 2019, , 267-286.

On the presence of families of pseudo-bosons in nilpotent Lie algebras of arbitrary corank. Journal of
Geometry and Physics, 2019, 137, 124-131. Geometry and Physics, 2019, 137, 124-131.

Two-dimensional Noncommutative Swanson Model and Its Bicoherent States. Trends in Mathematics, 2019, , 9-19.

Quantum like modeling of decision making: Quantifying uncertainty with the aid of
Heisenbergâ $€^{\prime \prime}$ Robertson inequality. Journal of Mathematical Psychology, 2018, 84, 49-56.

Generalized Heisenberg algebra and (non linear) pseudo-bosons. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 155201.

A description of pseudo-bosons in terms of nilpotent LieÂalgebras. Journal of Geometry and Physics,
2018, 125, 1-11.
<mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML"id="mml48" display="inline" overflow="scroll"
 dynamics and large time behaviors. Physica A: Statistical Mechanics and Its Applications, 2018, 505,
355-373.
Quantum mechanical settings inspired by RLC circuits. Journal of Mathematical Physics, 2018, 59,
042112

Biorthogonal vectors, sesquilinear forms, and some physical operators. Journal of Mathematical
Physics, 2018, 59, 033506.

Quantum field inspired model of decision making: Asymptotic stabilization of belief state via
45 interaction with surrounding mental environment. Journal of Mathematical Psychology, 2018, 82, 159-168.

Bi-squeezed states arising from pseudo-bosons. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 455204.

Finite-dimensional pseudo-bosons: A non-Hermitian version of the truncated harmonic oscillator.
Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2526-2532.

48 Non-Hermitian Operator Modelling of Basic Cancer Cell Dynamics. Entropy, 2018, 20, 270.
2.2

27

49 Projector operators in clustering. Mathematical Methods in the Applied Sciences, 2017, 40, 49-59.
2.3

4

50 (H, Ï-induced dynamics and the quantum game of life. Applied Mathematical Modelling, 2017, 43, 15-32.
4.2

42

Modeling interactions between political parties and electors. Physica A: Statistical Mechanics and Its Applications, 2017, 481, 243-264.
2.6

27

Deformed quons and bi-coherent states. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 2017, 473, 20170049.
2.1

23

55	A model of adaptive decision-making from representation of information environment by quantum fields. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170162.	3.4	28
56	Coordinate representation for non-Hermitian position and momentum operators. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170434.	2.1	11
57	A concise review of pseudobosons, pseudofermions, and their relatives. Theoretical and Mathematical Physics(Russian Federation), 2017, 193, 1680-1693.	0.9	9
58	Large-scale effects of migration and conflict in pre-agricultural groups: Insights from a dynamic model. PLoS ONE, 2017, 12, e0172262.	2.5	24
59	Intertwining operators for non-self-adjoint Hamiltonians and bicoherent states. Journal of Mathematical Physics, 2016, 57, 103501.	1.1	14
60	Appearances of pseudo-bosons from Black-Scholes equation. Journal of Mathematical Physics, 2016, 57,	1.1	8
61	Exceptional Points in a Non-Hermitian Extension of the Jaynes-Cummings Hamiltonian. Springer Proceedings in Physics, 2016, , 83-95.	0.2	0

```
73 A phenomenological operator description of dynamics of crowds: Escape strategies. Applied
    Mathematical Modelling, 2015, 39, 2276-2294.
```

Some results on the dynamics and transition probabilities for non self-adjoint hamiltonians. Annals
2.8
75 An Operator View on Alliances in Politics. SIAM Journal on Applied Mathematics, 2015, 75, 564-584. 1.8 47
76 A Quantum-Like View to a Generalized Two Players Game. International Journal of Theoretical Physics,1.2Toward a formalization of a two traders market with information exchange. Physica Scripta, 2015, 90,015203.$2.5 \quad 32$78 Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces.Annals of Physics, 2015, 362, 424-435.2.8
79 Model pseudofermionic systems: Connections with exceptional points. Physical Review A, 2014, 89, .2.521
80 Non-self-adjoint hamiltonians defined by Riesz bases. Journal of Mathematical Physics, 2014, 55, .1.129
81. Some invariant biorthogonal sets with an application to coherent states. Journal of Mathematical
Analysis and Applications, 2014, 415, 462-476.
83 Dynamics of closed ecosystems described by operators. Ecological Modelling, 2014, 275, 89-99.
2.535
84 Quantum Ideas for Classical Systems. Acta Applicandae Mathematicae, 2014, 132, 27-39. 1.0 0
85 The role of information in a two-traders market. Physica A: Statistical Mechanics and Its Applications, 2.6 30
2014, 404, 224-233.
1.2 1
86 Extended pseudo-fermions from non commutative bosons. Journal of Mathematical Physics, 2013, 54, 1.1 5
Pseudo-fermions in an Electronic Loss-Gain Circuit. International Journal of Theoretical Physics, 2013, 1.2 5

\#	Article	IF	Citations
91	Pseudo-bosons for the <mml:math xmlns:mml="http:\|/www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"> mml:msub mml:mrow mml:miD </mml:mi> </mml:mrow> mml:mrow mml:mn2< type ouantum Calogero model. Iournal of Mathematical Analvsis and Applications, 2013, 407, 90-96.		row >
92	Non-self-adjoint model of a two-dimensional noncommutative space with an unbound metric. Physical Review A, 2013, 88, .	2.5	21
93	From self-adjoint to non-self-adjoint harmonic oscillators: Physical consequences and mathematical pitfalls. Physical Review A, 2013, 88, .	2.5	30
94	A PHENOMENOLOGICAL OPERATOR DESCRIPTION OF INTERACTIONS BETWEEN POPULATIONS WITH APPLICATIONS TO MIGRATION. Mathematical Models and Methods in Applied Sciences, 2013, 23, 471-492.	3.3	58
95	Nonlinear pseudo-bosons versus hidden Hermiticity: II. The case of unbounded operators. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 115311.	2.1	18
96	Quantizations from reproducing kernel spaces. Annals of Physics, 2012, 332, 127-142.	2.8	8
97	Linear pseudo-fermions. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 444002.	2.1	38
98	Weak commutation relations of unbounded operators: Nonlinear extensions. Journal of Mathematical Physics, 2012, 53, .	1.1	8
99	Coherent states: a contemporary panorama. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 240301.	2.1	8
100	Few Simple Rules to Fix the Dynamics of Classical Systems Using Operators. International Journal of Theoretical Physics, 2012, 51, 2077-2085.	1.2	5
101	Dissipation evidence for the quantum damped harmonic oscillator via pseudo-bosons. Theoretical and Mathematical Physics(Russian Federation), 2012, 171, 497-504.	0.9	3
102	Induced and reduced unbounded operator algebras. Annali Di Matematica Pura Ed Applicata, 2012, 191, 285-292.	1.0	0
103	$\begin{aligned} & \text { Representable Linear Functionals on Partial *-Algebras. Mediterranean Journal of Mathematics, 2012, } 9 \text {, } \\ & \text { 153-163. } \end{aligned}$	0.8	3

104 The Dynamical Problem for a Non Self-adjoint Hamiltonian. , 2012, , 109-119.
0
105 Pseudo-Bosons, So Far. Reports on Mathematical Physics, 2011, 68, 175-210.
109 Nonlinear pseudo-bosons versus hidden Hermiticity. Journal of Physics A: Mathematical and 2.1 15
Theoretical, 2011, 44, 415305.$2.1 \quad 3$Non-isospectral Hamiltonians, intertwining operators and hidden hermiticity. Physics Letters, Section
110 A: General, Atomic and Solid State Physics, 2011, 376, 70-74.
1.2 3
111 Two-Parameters Pseudo-Bosons. International Journal of Theoretical Physics, 2011, 50, 1060-1065.
A Note on the Pais-Uhlenbeck Model and Its Coherent States. International Journal of Theoretical 1.2 6
Physics, 2011, 50, 3241-3250.113 Damping in quantum love affairs. Physica A: Statistical Mechanics and Its Applications, 2011, 390,2803-2811.
2.6 29
Weak commutation relations of unbounded operators and applications. Journal of Mathematical 1.1 7
114 1.1 Physics, 2011, 52, 113508.10
Locally convex quasi <mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML" altimg="sil.gif"
115 overflow="scroll"> mml:msupmml:miC</mml:mi>mml:mo â^-</mml:mo></mml:msup></mml:math>-normed.oalgebras. Journal of Mathematical Analysis and Applications, 2010, 366, 593-606.
Examples of pseudo-bosons in quantum mechanics. Physics Letters, Section A: General, Atomic andSolid State Physics, 2010, 374, 3823-3827.$2.1 \quad 44$
Modular structures on trace class operators and applications to Landau levels. Journal of Physics A:Mathematical and Theoretical, 2010, 43, 105202.
2.1 30
118 An Operator-Like Description of Love Affairs. SIAM Journal on Applied Mathematics, 2010, 70, 3235-3251. 1.8 26
119. Modified Landau levels, damped harmonic oscillator, and two-dimensional pseudo-bosons. Journal ofMathematical Physics, 2010, 51, 123502.
1.1 21
120 Pseudobosons, Riesz bases, and coherent states. Journal of Mathematical Physics, 2010, 51, .1.154
121 Construction of pseudobosons systems. Journal of Mathematical Physics, 2010, 51, 1.1 14
Mathematical aspects of intertwining operators: the role of Riesz bases. Journal of Physics A :2.125
Mathematical and Theoretical, 2010, 43, 175203.0.52
Pseudo-Bosons from Landau Levels. Symmetry, Integrability and Geometry: Methods and Applications
(SIGMA), 2010, , .Intertwining operators between different Hilbert spaces: Connection with frames. Journal of1.116
Mathematical Physics, 2009, 50, 043509.
Vector coherent states and intertwining operators. Journal of Physics A: Mathematical and
Theoretical, 2009, 42, 075302.2.120
127 Quons, coherent states and intertwining operators. Physics Letters, Section A: General, Atomic and

Representations and derivations of quasi â^--algebras induced by local modifications of states. Journal of Mathematical Analysis and Applications, 2009, 356, 615-623.

Simplified stock markets described by number operators. Reports on Mathematical Physics, 2009, 63, 381-398.

Bicommutants of reduced unbounded operator algebras. Proceedings of the American Mathematical Society, 2009, 137, 3709-3709.

Extended SUSY quantum mechanics, intertwining operators and coherent states. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6226-6231.

Multiplication of distributions in any dimension: Applications to \hat{l}^{\prime}-function and its derivatives. Journal of Mathematical Analysis and Applications, 2008, 337, 1337-1344.

Gabor-like systems in $\{\{\text { mathcal } L\}\}^{\wedge} 2\left(\{b \mathrm{R}\}\{ \}^{\wedge} \mathrm{d}\right)$ and extensions to wavelets. Journal of Physics A : Mathematical and Theoretical, 2008, 41, 335208.

Oâィt-algebras and quantum dynamics: Some existence results. Journal of Mathematical Physics, 2008, 49, 053522.

Supersymmetric associated vector coherent states and generalized Landau levels arising from two-dimensional supersymmetry. Journal of Mathematical Physics, 2008, 49, 032110.

Structure of locally convex quasi C *-algebras. Journal of the Mathematical Society of Japan, 2008, 60,
0.4

10

137 Invariant analytic orthonormalization procedure with an application to coherent states. Journal of Mathematical Physics, 2007, 48, 043505.

Bounded version of bosonic creation and annihilation operators and their related quasicoherent states. Journal of Mathematical Physics, 2007, 48, 013511.
1.1

ALGEBRAS OF UNBOUNDED OPERATORS AND PHYSICAL APPLICATIONS: A SURVEY. Reviews in Mathematical Physics, 2007, 19, 231-271.

Stock markets and quantum dynamics: A second quantized description. Physica A: Statistical Mechanics and Its Applications, 2007, 386, 283-302.

An invariant analytic orthonormalization procedure with applications. Journal of Mathematical Physics, 2007, 48, 103513.

The Heisenberg picture in the analysis of stock markets and in other sociological contexts. Quality and Quantity, 2007, 41, 533-544.

Physical Applications of Algebras of Unbounded Operators., 2007, , 93-121.

145	An operatorial approach to stock markets. Journal of Physics A, 2006, 39, 6823-6840.	1.6
146	Quasi *-algebras of measurable operators. Studia Mathematica, 2006, 172, 289-305.	0.7
147	A Non-Commutative Approach to Ordinary Differential Equations. International Journal of Theoretical Physics, 2005, 44, 1193-1216.	1.2
148	The Role of a Second Reservoir in an Open BCS Model. Open Systems and Information Dynamics, 2005, 12, 401-420.	1.2
149	Exponentiating derivations of quasiâ^--algebras: possible approaches and applications. International Journal of Mathematics and Mathematical Sciences, 2005, 2005, 2805-2820.	0.7
150	Relations between multiresolution analysis and quantum mechanics. Journal of Mathematical Physics, 2005, 46, 053506.	1.1
151	Some physical appearances of vector coherent states and coherent states related to degenerate Hamiltonians. Journal of Mathematical Physics, 2005, 46, 053518.	1.1
152	THE OPEN BCS MODEL, ITS STOCHASTIC LIMIT AND SOME GENERALIZATIONS. Fluctuation and Noise Letters, 2005, 05, L343-L348.	1.5
153	Many-body applications of the stochastic limit: A review. Reports on Mathematical Physics, 2005, 56, 117-152.	0.8
154	Derivations of quasi*-algebras. International Journal of Mathematics and Mathematical Sciences, 2004, 2004, 1077-1096.	0.7

Multiplications of Distributions in One Dimension and a First Application to Quantum Field Theory.Relations between the Hepp-Lieb and the Alli-Sewell Laser Models. Annales Henri Poincare, 2002, 3,1.7
1.0 21
Journal of Mathematical Analysis and Applications, 2002, 266, 298-320. 163
983-1002.
Some classes of topological quasi \$*\$-algebras. Proceedings of the American Mathematical Society,
0.8 34
165 2001, 129, 2973-2980.
Multi-resolution analysis and fractional quantum Hall effect: An equivalence result. Journal of Mathematical Physics, 2001, 42, 5116-5129.
1.1 9
Fixed points in topological \$ast\$-algebras of unbounded operators. Publications of the Research Institute for Mathematical Sciences, 2001, 37, 397-418. 0.8Morphisms of Certain Banach C*-Modules. Publications of the Research Institute for MathematicalSciences, 2000, 36, 681-705.0.8Locally Convex *-Algebras and the Thermodynamical Limit of Quantum Models. International Societyfor Analysis, Applications and Computation, 2000, , 651-659.$0.1 \quad 0$
TOPOLOGICAL PARTIAL *-ALGEBRAS: BASIC PROPERTIES AND EXAMPLES. Reviews in Mathematical Physics,
170 1999, 11, 267-302.New structures in the theory of the laser model. II. Microscopic dynamics and a nonequilibriumentropy principle. Journal of Mathematical Physics, 1998, 39, 2730-2747.
Applications of topological*-algebras of unbounded operators. Journal of Mathematical Physics, 1998,
39, 6091-6105.
121
173 The Heisenberg dynamics of spin systems: A quasi*â€algebras approach. Journal of Mathematical Physics, 1996, 37, 4219-4234. 1.1 30

Applications of wavelets to quantum mechanics: a pedagogical example. Journal of Physics A, 1996, 29,

Applications of wavelets to quantum mechanics: a pedagogical example. Journal of Physics A, 1996, 29, 565-576. 565-576.
1.6
1.6 8 8
174
1740.843
CQ*-Algebras: Structure Properties. Publications of the Research Institute for Mathematical Sciences,
175 1996, 32, 85-116.1.035
176 Lp-Spaces as Quasi *-Algebras. Journal of Mathematical Analysis and Applications, 1996, 197, 810-824.1.0and Its Derivatives. Journal of Mathematical Analysis and Applications, 1995, 196, 885-901.More wavelet-like orthonormal bases for the lowest Landau level: some considerations. Journal of

