Fabio Bagarello

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/4528070/publications.pdf
Version: 2024-02-01

A PHENOMENOLOGICAL OPERATOR DESCRIPTION OF INTERACTIONS BETWEEN POPULATIONS WITH

3.3

58
APPLICATIONS TO MIGRATION. Mathematical Models and Methods in Applied Sciences, 2013, 23, 471-492.

2 Pseudobosons, Riesz bases, and coherent states. Journal of Mathematical Physics, 2010, 51,. 54
\squareDynamics of mean-field spin models from basic results in abstract differential equations. Journal of
1.2
Statistical Physics, 1992, 66, 849-866.
50
4 An Operator View on Alliances in Politics. SIAM Journal on Applied Mathematics, 2015, 75, 564-584.
1.8
47
5 A phenomenological operator description of dynamics of crowds: Escape strategies. Applied
Mathematical Modelling, 2015, 39, 2276-2294.
$4.2 \quad 45$
6 An operatorial approach to stock markets. Journal of Physics A, 2006, 39, 6823-6840.
1.6
44
7 ALGEBRAS OF UNBOUNDED OPERATORS AND PHYSICAL APPLICATIONS: A SURVEY. Reviews in Mathematical
7 Physics, 2007, 19, 231-271.
1.7
44
8 Examples of pseudo-bosons in quantum mechanics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3823-3827.
2.1
44
1996, 32, 85-116.

10 (H, Ï)-induced dynamics and the quantum game of life. Applied Mathematical Modelling, 2017, 43, 15-32.
4.2

42
11 Linear pseudo-fermions. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 444002.

2.1

38

12 Lp-Spaces as Quasi *-Algebras. Journal of Mathematical Analysis and Applications, 1996, 197, 810-824.
1.0

35

13 Dynamics of closed ecosystems described by operators. Ecological Modelling, 2014, 275, 89-99.
2.5

35

14 Some classes of topological quasi $\$ *$-algebras. Proceedings of the American Mathematical Society, 2001, 129, 2973-2980.

15 Stock markets and quantum dynamics: A second quantized description. Physica A: Statistical
2.6

32
Mechanics and Its Applications, 2007, 386, 283-302.

16 More mathematics for pseudo-bosons. Journal of Mathematical Physics, 2013, 54, 063512.
1.1

32

17 Toward a formalization of a two traders market with information exchange. Physica Scripta, 2015, 90,
015203.
2.5

32

Quantum field inspired model of decision making: Asymptotic stabilization of belief state via

1.8

31

The Heisenberg dynamics of spin systems: A quasi*â€algebras approach. Journal of Mathematical Physics, 1996, 37, 4219-4234.
1.1

30

Modular structures on trace class operators and applications to Landau levels. Journal of Physics A:
2.1

Mathematical and Theoretical, 2010, 43, 105202.

From self-adjoint to non-self-adjoint harmonic oscillators: Physical consequences and mathematical pitfalls. Physical Review A, 2013, 88, .
2.5

30

The role of information in a two-traders market. Physica A: Statistical Mechanics and Its Applications,
2014, 404, 224-233.
2.6

30

24 An Operatorial Description of Desertification. SIAM Journal on Applied Mathematics, 2016, 76, 479-499.
1.8

30

```
25 Damping in quantum love affairs. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 2803-2811.
```

Non-self-adjoint hamiltonians defined by Riesz bases. Journal of Mathematical Physics, 2014, 55, .
1.1

29
Non-Hermitian Hamiltonian for a modulated Jaynes-Cummings model withPTsymmetry. Physical Review
27 A, 2015, 91,
A Quantum-Like View to a Generalized Two Players Game. International Journal of Theoretical Physics, 2015, 54, 3612-3627.2.5291.229
29 A quantum statistical approach to simplified stock markets. Physica A: Statistical Mechanics and Its
Applications, 2009, 388, 4397-4406.
$30 \quad$ Quons, coherent states and intertwining op$2.1 \quad 28$28
A model of adaptive decision-making from representation of information environment by quantum
31 fields. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375,3.42820170162.Multiplication of Distributions in One Dimension: Possible Approaches and Applications to ${ }^{\prime}$ 'Function1.027and Its Derivatives. Journal of Mathematical Analysis and Applications, 1995, 196, 885-901.Modeling interactions between political parties and electors. Physica A: Statistical Mechanics and Its2.627Applications, 2017, 481, 243-264.

\#	Article	Citation
37	<mmima overflow altimg=" dynamic	$\mathrm{ad}: \mathrm{mo}>)$

38 New structures in the theory of the laser model. II. Microscopic dynamics and a nonequilibrium entropy principle. Journal of Mathematical Physics, 1998, 39, 2730-2747.
1.1

25
30 Mathematical aspects of intertwining operators: the role of Riesz bases. Journal of Physics A:
2.1

Mathematical and Theoretical, 2010, 43, 175203.
25

40 Morphisms of Certain Banach C*-Modules. Publications of the Research Institute for Mathematical

45 | Applications of topological*-algebras of unbounded operators. Journal of Mathematical Physics, 1998, |
| :--- |
| $39,6091-6105$. |

$46 \quad$| Multiplications of Distributions in One Dimension and a First Application to Quantum Field Theory. |
| :--- |
| Journal of Mathematical Analysis and Applications, 2002, 266, 298-320. |

$47 \quad$| Modified Landau levels, damped harmonic oscillator, and two-dimensional pseudo-bosons. Journal of |
| :--- |
| Mathematical Physics, 2010, 51, 123502. |

55 An improved model of alliances between political parties. Ricerche Di Matematica, 2016, 65, 399-412. 1.0

56 Nonlinear pseudo-bosons versus hidden Hermiticity: Il. The case of unbounded operators. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 115311.
$2.1 \quad 18$
58

Some results on the dynamics and transition probabilities for non self-adjoint hamiltonians. Annals of Physics, 2015, 356, 171-184.
2.8

17

59 Biorthogonal vectors, sesquilinear forms, and some physical operators. Journal of Mathematical
$1.1 \quad 17$
Physics, 2018, 59, 033506.

60 Exponentiating derivations of quasiâ̂̂--algebras: possible approaches and applications. International
Journal of Mathematics and Mathematical Sciences, 2005, 2005, 2805-2820.
61 Intertwining operators between different Hilbert spaces: Connection with frames. Journal of Mathematical Physics, 2009, 50, 043509.$1.1 \quad 16$

First results on applying a non-linear effect formalism to alliances between political parties and buy and sell dynamics. Physica A: Statistical Mechanics and Its Applications, 2016, 444, 403-414.
63 Simplified stock markets described by number operators. Reports on Mathematical Physics, 2009, 63,
381-398.
64 Nonlinear pseudo-bosons. Journal of Mathematical Physics, 2011, 52, .
65 Nonlinear pseudo-bosons versus hidden Hermiticity. Journal of Physics A: Mathematical and
Theoretical, 2011, 44, 415305. 65$0.8 \quad 15$1.115Hamiltonians defined by biorthogonal sets. Journal of Physics A: Mathematical and Theoretical, 2017,50, 145203.
2.1 15
A Note on the algebraic approach to the Â«almostÂ» mean-field Heisenberg model. Societa Italiana Di
$67 \quad$ Fisica Nuovo Cimento
0.2 14Quantum corrections to the Wigner crystal: A Hartree-Fock expansion. Physical Review B, 1993, 48,3.214
5306-5314.
$1.1 \quad 14$

Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces.
73 Algebraic dynamics inO*-algebras: A perturbative approach. Journal of Mathematical Physics, 2002, 43,
3280-3292.
74 Representable states on quasilocal quasi *-algebras. Journal of Mathematical Physics, 2011, 52, .
$1.1 \quad 12$

```
75 ? $mathcal {D}$ -Deformed Harmonic Oscillators. International Journal of Theoretical Physics, 2015,
54, 4110-4123.
1.2 12
```

76 Spreading of Competing Information in a Network. Entropy, 2020, 22, 1169.
$\begin{array}{ll} & \\ 77 & \text { TOPOLOGICAL PARTI } \\ & 1999,11,267-302 .\end{array}$ 1.7 1178 kq-Representation for pseudo-bosons, and completeness of bi-coherent states. Journal ofMathematical Analysis and Applications, 2017, 450, 631-646.algebras. Journal of Mathematical Analysis and Applications, 2010, 366, 593-606.
83 Damping and pseudo-fermions. Journal of Mathematical Physics, 2013, 54, 1.1 10
A concise review of pseudobosons, pseudofermions, and their relatives. Theoretical and Mathematical
Physics(Russian Federation), 2017, 193, 1680-1693.
$0.9 \quad 9$

A description of pseudo-bosons in terms of nilpotent LieÂalgebras. Journal of Geometry and Physics, 92 2018, 125, 1-11.
$1.4 \quad 9$
Fixed points in topological \$ast\$-algebras of unbounded operators. Publications of the Research
Institute for Mathematical Sciences, 2001, 37, 397-418.

94 Applications of wavelets to quantum mechanics: a pedagogical example. Journal of Physics A, 1996, 29, 565-576.
1.6

8

95 Quantizations from reproducing kernel spaces. Annals of Physics, 2012, 332, 127-142.
$2.8 \quad 8$

96 Weak commutation relations of unbounded operators: Nonlinear extensions. Journal of
Mathematical Physics, 2012, 53, .
$1.1 \quad 8$

97 Coherent states: a contemporary panorama. Journal of Physics A: Mathematical and Theoretical, 2012,
45, 240301.

Appearances of pseudo-bosons from Black-Scholes equation. Journal of Mathematical Physics, 2016, 57,
1.18

$$
\begin{aligned}
& 99 \text { Pseudo-bosons and bi-coherent states out of â,,"2(â,y). Journal of Physics: Conference Series, 2021, 2038, } \\
& \text { O12001. } \\
& 100 \quad \begin{array}{l}
\text { Nonstandard analysis in classical physics and quantum formal scattering. International Journal of } \\
\text { Theoretical Physics, 1988, 27, 557-566. }
\end{array} \\
& 101 \begin{array}{l}
\text { Multi-resolution analysis and fractional quantum Hall effect: more results. Journal of Physics A, } \\
2003,36,123-138 .
\end{array}
\end{aligned}
$$

0.4

8
$1.2 \quad 7$

102 Weak commutation relations of unbounded operators and applications. Journal of Mathematical
Physics, 2011, 52, 113508.
$1.1 \quad 7$
$1.6 \quad 7$
103 PT-symmetric graphene under a magnetic field. Proceedings of the Royal Society A: Mathematical,
$2.1 \quad 7$
Physical and Engineering Sciences, 2016, 472, 20160365.

Non-self-adjoint Hamiltonians with complex eigenvalues. Journal of Physics A: Mathematical and
2.1

104 Theoretical, 2016, 49, 215304.

- 7

Finite-dimensional pseudo-bosons: A non-Hermitian version of the truncated harmonic oscillator.
105 Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2526-2532.
$2.1 \quad 7$

106 Bicoherent-state path integral quantization of a non-hermitian hamiltonian. Annals of Physics, 2020,
422, 168313.

107 Relations between the Hepp-Lieb and the Alli-Sewell Laser Models. Annales Henri Poincare, 2002, 3,
983-1002.

$$
\begin{aligned}
& \text { Generalized Bogoliubov transformations versus D-pseudo-bosons. Journal of Mathematical Physics, } \\
& 1092015,56, \text {. }
\end{aligned}
$$

Some remarks on few recent results on the damped quantum harmonic oscillator. Annals of Physics, 2020, 414, 168091.

A chain of solvable non-Hermitian Hamiltonians constructed by a series of metric operators. Annals of Physics, 2021, 430, 168511.

Two-dimensional Noncommutative Swanson Model and Its Bicoherent States. Trends in Mathematics, 2019, , 9-19.
$0.1 \quad 6$

> More wavelet-like orthonormal bases for the lowest Landau level: some considerations. Journal of Physics A, 1994, 27, 5583-5597.
1.65

Multiplication of distributions in any dimension: Applications to 1 Í-function and its derivatives. Journal
1.0 of Mathematical Analysis and Applications, 2008, 337, 1337-1344.

Few Simple Rules to Fix the Dynamics of Classical Systems Using Operators. International Journal of Theoretical Physics, 2012, 51, 2077-2085.
1.2

5

116 Extended pseudo-fermions from non commutative bosons. Journal of Mathematical Physics, 2013, 54, .

1.1

Pseudo-fermions in an Electronic Loss-Gain Circuit. International Journal of Theoretical Physics, 2013, 52, 4507-4518.

Gibbs states defined by biorthogonal sequences. Journal of Physics A: Mathematical and Theoretical,
2.1

5
119 Quantum mechanical settings inspired by RLC circuits. Journal of Mathematical Physics, 2018, 59,
042112.
$1.1 \quad 5$
Tridiagonality, supersymmetry and non self-adjoint Hamiltonians. Journal of Physics A: Mathematical2.1

A Swanson-like Hamiltonian and the inverted harmonic oscillator. Journal of Physics A: Mathematical
$2.1 \quad 5$ and Theoretical, 2022, 55, 225204.

5

> The Stochastic Limit of the FrÃqhlich Hamiltonian: Relations with the Quantum Hall Effect. International Journal of Theoretical Physics, 2003, 42, 2515-2530.

Invariant analytic orthonormalization procedure with an application to coherent states. Journal of Mathematical Physics, 2007, 48, 043505.

The Heisenberg picture in the analysis of stock markets and in other sociological contexts. Quality and Quantity, 2007, 41, 533-544.
127 Projector operators in clustering. Mathematical Methods in the Applied Sciences, 2017, 40, 49-59.

$128 \quad$| Generalized Riesz Systems and Quasi Bases in Hilbert Space. Mediterranean Journal of Mathematics, |
| :--- |
| $2020,17,1$. | 2020, 17, 1.

129	Three-state quantum systems: A procedure for the solution. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1989, 11, 405-418.	0.4	3
130	Multiresolution analysis generated by a seed function. Journal of Mathematical Physics, 2003, 44, 1519-1534.	1.1	3
131	The stochastic limit in the analysis of the open BCS model. Journal of Physics A, 2004, 37, 2537-2548.	1.6	3
132	Relations between multiresolution analysis and quantum mechanics. Journal of Mathematical Physics, 2005, 46, 053506.	1.1	3
133	Many-body applications of the stochastic limit: A review. Reports on Mathematical Physics, 2005, 56, 117-152.	0.8	3
134	Non-isospectral Hamiltonians, intertwining operators and hidden hermiticity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 376, 70-74.	2.1	3
135	Two-Parameters Pseudo-Bosons. International Journal of Theoretical Physics, 2011, 50, 1060-1065.	1.2	3

Dissipation evidence for the quantum damped harmonic oscillator via pseudo-bosons. Theoretical and
136 Mathematical Physics(Russian Federation), 2012, 171, 497-504.
0.93
.
3

137 Representable Linear Functionals on Partial *-Algebras. Mediterranean Journal of Mathematics, 2012, 9, 153-163.
$0.8 \quad 3$

On the presence of families of pseudo-bosons in nilpotent Lie algebras of arbitrary corank. Journal of Geometry and Physics, 2019, 137, 124-131.
1.4

3

139 Modeling epidemics through ladder operators. Chaos, Solitons and Fractals, 2020, 140, 110193.

140 Generalized Riesz systems and orthonormal sequences in Krein spaces. Journal of Physics A:
Mathematical and Theoretical, 2020, 53, 085202.
$2.1 \quad 3$
Abstract ladder operators and their applications. Journal of Physics A: Mathematical and Theoretical,
0, , .
2.1

3

Fourier transforms, fractional derivatives, and a little bit of quantum mechanics. Rocky Mountain Journal of Mathematics, 2020, 50, .
145 A note on faithful traces on a von Neumann algebra. Rendiconti Del Circolo Matematico Di Palermo,
2006, 55, 21-28.
An invariant analytic orthonormalization procedure with applications. Journal of Mathematical
146 Physics, 2007, 48, 103513.

147 | Bicommutants of reduced unbounded operator algebras. Proceedings of the American Mathematicat |
| :--- |
| Society, 2009, 137, 3709-3709. |

148 Some invariant biorthogonal sets with an application to coherent states. Journal of Mathematical
Analysis and Applications, 2014, 415, 462-476.
149 \$\$mathscr \{D\}\{-\}\$\$ D - Deformed and SUSY-Deformed Graphene: First Results. Springer Proceedings in

149 \$\$mathscr \{D\}\{-\}\$\$ D - Deformed and SUSY-Deformed Graphene: First Results. Springer Proceedings in
$0.2 \quad 2$

150 A dynamical approach to compatible and incompatible questions. Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121282.
$2.6 \quad 2$

151	One-directional quantum mechanical dynamics and an application to decision making. Physica A: Statistical Mechanics and Its Applications, 2020, 537, 122739.	2.6	2
152	Susy for Non-Hermitian Hamiltonians, with a View to Coherent States. Mathematical Physics Analysis and Geometry, 2020, 23, 1.	1.0	2
153	Eigenvalues of nonâ€Hermitian matrices: A dynamical and an iterative approachâ€"Application to a truncated Swanson model. Mathematical Methods in the Applied Sciences, 2020, 43, 5758-5775.	2.3	2
154	Coupled Susy, pseudo-bosons and a deformed su(1,1) Lie algebra. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 145201.	2.1	2
155	Topological Decompositions of the Pauli Group and their Influence on Dynamical Systems. Mathematical Physics Analysis and Geometry, 2021, 24, 1.	1.0	2
156	Pseudo-Bosons from Landau Levels. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 2010, , .	0.5	2
157	Hamiltonians Generated by Parseval Frames. Acta Applicandae Mathematicae, 2021, $171,1$.	1.0	2

Bi-coherent states as generalized eigenstates of the position and the momentum operators. Zeitschrift
158 Fur Angewandte Mathematik Und Physik, 2022, 73, .
1.42
$1.2 \quad 1$
159 Generation of Frames. International Journal of Theoretical Physics, 2004, 43, 529-544.

160 Bounded version of bosonic creation and annihilation operators and their related quasicoherent
$1.1 \quad 1$
states. Journal of Mathematical Physics, 2007, 48, 013511.

Gabor-like systems in $\{\{\text { mathcal } L\}\}^{\wedge} 2\left(\{b \operatorname{R}\}\{ \}^{\wedge} \mathrm{d}\right)$ and extensions to wavelets. Journal of Physics A :
Mathematical and Theoretical, $2008,41,335208$.
Pseudo-bosons for the <mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML" altimg="sil.gif" display="inline"
 type quantum Calogero model. Journal of Mathematical Analysis and Applications, 2013, 407, 90-96.

\#	ArticLe		
163	Matrix Computations for the Dynamics of Fermionic Systems. International Journal of Theoretical Physics, 2014, 53, 555-565.		Some results on the rotated infinitely deep potential and its coherent states. Physica A: Statistical
:---			
Mechanics and Its Applications, 2021, 564, 125565.			

176 Escape Strategies. , 2019, , 141-167.
o

177 Closed Ecosystems. , 2019, , 168-193. 0

178 More on Biological Systems. , 2019, , 194-205.
0

179 Quantum Game of Life and Its (H, Ï)-Induced Dynamics., 2019, , 206-216.

