
Sumit Agarwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4527713/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Area-selective atomic layer deposition of Al2O3 on SiNx with SiO2 as the nongrowth surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 012403.	2.1	5
2	Functionalization of the SiO ₂ Surface with Aminosilanes to Enable Area-Selective Atomic Layer Deposition of Al ₂ O ₃ . Langmuir, 2022, 38, 652-660.	3.5	13
3	Self-Aligned Selective Area Front Contacts on <i>Poly</i> -Si/SiO <i> _x </i> Passivating Contact <i>c</i> -Si Solar Cells. IEEE Journal of Photovoltaics, 2022, 12, 678-689.	2.5	10
4	Understanding SiO _{<i>x</i>} Layer Breakup in poly-Si/SiO _{<i>x</i>} Passivating Contacts for Si Solar Cells Using Precisely Engineered Surface Textures. ACS Applied Energy Materials, 2022, 5, 3043-3051.	5.1	2
5	Extending growth inhibition during area-selective atomic layer deposition of Al ₂ O ₃ on aminosilane-functionalized SiO ₂ . Chemical Communications, 2022, 58, 6650-6652.	4.1	1
6	Atomic structure of light-induced efficiency-degrading defects in boron-doped Czochralski silicon solar cells. Energy and Environmental Science, 2021, 14, 5416-5422.	30.8	6
7	Selective Cas-Phase Functionalization of SiO ₂ and SiN <i>_x</i> Surfaces with Hydrocarbons. Langmuir, 2021, 37, 3960-3969.	3.5	7
8	Mechanism for growth initiation on aminosilane-functionalized SiO2 during area-selective atomic layer deposition of ZrO2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	8
9	Atomic layer deposition and selective etching of ruthenium for area-selective deposition: Temperature dependence and supercycle design. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	9
10	Chemical Passivation of Crystalline Si by Al ₂ O ₃ Deposited Using Atomic Layer Deposition: Implications for Solar Cells. ACS Applied Nano Materials, 2021, 4, 6629-6636.	5.0	6
11	Gas-phase surface functionalization of SiN <i>x</i> with benzaldehyde to increase SiO2 to SiN <i>x</i> etch selectivity in atomic layer etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	5
12	Designing Anion-Exchange lonomers with Oriented Nanoscale Phase Separation at a Silver Interface. Journal of Physical Chemistry C, 2021, 125, 20592-20605.	3.1	3
13	Trap-Assisted Dopant Compensation Prevents Shunting in Poly-Si Passivating Interdigitated Back Contact Silicon Solar Cells. ACS Applied Energy Materials, 2021, 4, 10774-10782.	5.1	8
14	Selective functionalization of partially etched SiNx to enhance SiO2 to SiNx etch selectivity. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 050401.	2.1	0
15	Surface reaction mechanisms during atomic layer deposition of zirconium oxide using water, ethanol, and water-ethanol mixture as the oxygen sources. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	15
16	Investigating Silver Nanoparticle Interactions with Quaternary Ammonium Functionalized Triblock Copolymers and Their Effect on Midblock Crystallinity. ACS Applied Polymer Materials, 2020, 2, 4914-4923.	4.4	5
17	Effect of Surface Texture on Pinhole Formation in SiO <i>_x</i> -Based Passivated Contacts for High-Performance Silicon Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 55737-55745.	8.0	18
18	Etch selectivity during plasma-assisted etching of SiO2 and SiN <i>x</i> : Transitioning from reactive ion etching to atomic layer etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	28

SUMIT AGARWAL

#	Article	IF	CITATIONS
19	Influence of Tabula Rasa on Process- and Light-Induced Degradation of Solar Cells Fabricated From Czochralski Silicon. IEEE Journal of Photovoltaics, 2020, 10, 1557-1565.	2.5	4
20	Isolating p- and n-Doped Fingers With Intrinsic Poly-Si in Passivated Interdigitated Back Contact Silicon Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 1574-1581.	2.5	12
21	Vacancy Healing as a Desorption Tool: Oxygen Triggered Removal of Stored Ammonia from NiO _{1–<i>x</i>} /MOR Validated by Experiments and Simulations. ACS Applied Energy Materials, 2020, 3, 8233-8239.	5.1	6
22	Effect of Crystallographic Orientation and Nanoscale Surface Morphology on Poly-Si/SiO _{<i>x</i>} Contacts for Silicon Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 42021-42031.	8.0	29
23	Surface prefunctionalization of SiO2 to modify the etch per cycle during plasma-assisted atomic layer etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	16
24	Modifications of Textured Silicon Surface Morphology and Its Effect on Poly-Si/SiO <i> _x </i> Contact Passivation for Silicon Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1513-1521.	2.5	13
25	Atomic layer deposition of silicon-based dielectrics for semiconductor manufacturing: Current status and future outlook. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	74
26	Area-Selective Deposition of Ruthenium by Combining Atomic Layer Deposition and Selective Etching. Chemistry of Materials, 2019, 31, 3878-3882.	6.7	71
27	Surface reactions of aminosilane precursors during N ₂ plasmaâ€assisted atomic layer deposition of SiN <i>_x</i> . Plasma Processes and Polymers, 2019, 16, 1900032.	3.0	10
28	Understanding the charge transport mechanisms through ultrathin SiO <i>x</i> layers in passivated contacts for high-efficiency silicon solar cells. Applied Physics Letters, 2019, 114, .	3.3	41
29	Gas Phase Organic Functionalization of SiO ₂ with Propanoyl Chloride. Langmuir, 2018, 34, 14489-14497.	3.5	12
30	A Three-Step Atomic Layer Deposition Process for SiN _{<i>x</i>} Using Si ₂ Cl ₆ , CH ₃ NH ₂ , and N ₂ Plasma. ACS Applied Materials & Interfaces, 2018, 10, 19153-19161.	8.0	21
31	Effect of silicon oxide thickness on polysilicon based passivated contacts for high-efficiency crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 270-276.	6.2	60
32	Challenges in atomic layer deposition of carbon-containing silicon-based dielectrics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	16
33	Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO ₂ . ACS Applied Materials & Interfaces, 2017, 9, 31067-31075.	8.0	40
34	Atomic Layer Deposition of SiC _{<i>x</i>} N _{<i>y</i>} Using Si ₂ Cl ₆ and CH ₃ NH ₂ Plasma. Chemistry of Materials, 2017, 29, 6269-6278.	6.7	21
35	Silicon Nitride Encapsulated Silicon Nanocrystals for Lithium Ion Batteries. Plasma Processes and Polymers, 2016, 13, 116-123.	3.0	8
36	Low-Temperature Conformal Atomic Layer Deposition of SiN _{<i>x</i>} Films Using Si ₂ Cl ₆ and NH ₃ Plasma. ACS Applied Materials & Interfaces, 2015, 7, 10806-10813.	8.0	70

SUMIT AGARWAL

#	Article	IF	CITATIONS
37	Low temperature hydrogen plasma-assisted atomic layer deposition of copper studied using <i>in situ</i> infrared reflection absorption spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	11
38	Atomic layer deposition of titanium dioxide using titanium tetrachloride and titanium tetraisopropoxide as precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	26
39	<i>In situ</i> diagnostics for studying gas-surface reactions during thermal and plasma-assisted atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	26
40	Influence of Surface Temperature on the Mechanism of Atomic Layer Deposition of Aluminum Oxide Using an Oxygen Plasma and Ozone. Langmuir, 2012, 28, 350-357.	3.5	54
41	In Situ Gas-Phase Hydrosilylation of Plasma-Synthesized Silicon Nanocrystals. ACS Applied Materials & Interfaces, 2011, 3, 3033-3041.	8.0	50
42	Surface Hydride Composition of Plasma-Synthesized Si Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 20375-20379.	3.1	40
43	Mechanism of Self-catalytic Atomic Layer Deposition of Silicon Dioxide Using 3-Aminopropyl Triethoxysilane, Water, and Ozone. Chemistry of Materials, 2011, 23, 2312-2316.	6.7	39
44	Facile abstraction of hydrogen atoms from graphane, diamond, and amorphous carbon surfaces: A first-principles study. Physical Review B, 2010, 82, .	3.2	5
45	Surface Reaction Mechanisms during Ozone and Oxygen Plasma Assisted Atomic Layer Deposition of Aluminum Oxide. Langmuir, 2010, 26, 13732-13735.	3.5	86
46	Silicon quantum dot optical properties and synthesis: Implications for photovoltaic devices. , 2010, , .		0
47	Surface Reaction Mechanisms during Plasma-Assisted Atomic Layer Deposition of Titanium Dioxide. Journal of Physical Chemistry C, 2009, 113, 12962-12965.	3.1	64
48	Atomic hydrogen interactions with amorphous carbon thin films. Journal of Applied Physics, 2009, 106, .	2.5	33
49	Surface Reaction Mechanisms during Ozone-Based Atomic Layer Deposition of Titanium Dioxide. Journal of Physical Chemistry C, 2008, 112, 9552-9554.	3.1	56
50	Self-limiting growth of tantalum oxide thin films by pulsed plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2007, 90, 131504.	3.3	28
51	Threshold ionization mass spectrometry of reactive species in remote Arâ^•C2H2 expanding thermal plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1400-1412.	2.1	46