List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4527585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catalysis, 2020, 10, 10253-10315.	11.2	401
2	Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. Journal of Hazardous Materials, 2021, 413, 125324.	12.4	293
3	Recent Advances in Plasmonic Photocatalysis Based on TiO ₂ and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. Small, 2022, 18, e2101638.	10.0	190
4	Vacancy Engineering in Semiconductor Photocatalysts: Implications in Hydrogen Evolution and Nitrogen Fixation Applications. Advanced Functional Materials, 2021, 31, 2009807.	14.9	166
5	Efficient Electron Transfer across a ZnO–MoS ₂ –Reduced Graphene Oxide Heterojunction for Enhanced Sunlightâ€Driven Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 3588-3603.	6.8	162
6	Rational Design and Development of Lanthanide-Doped NaYF ₄ @CdS–Au–RGO as Quaternary Plasmonic Photocatalysts for Harnessing Visible–Near-Infrared Broadband Spectrum. ACS Applied Materials & Interfaces, 2018, 10, 15565-15581.	8.0	156
7	Electrochemical-Coupling Layer-by-Layer (ECC–LbL) Assembly. Journal of the American Chemical Society, 2011, 133, 7348-7351.	13.7	144
8	N-doped ZnO–MoS ₂ binary heterojunctions: the dual role of 2D MoS ₂ in the enhancement of photostability and photocatalytic activity under visible light irradiation for tetracycline degradation. Materials Chemistry Frontiers, 2017, 1, 1093-1106.	5.9	125
9	Recyclable, bifunctional composites of perovskite type N-CaTiO ₃ and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Materials Chemistry Frontiers, 2017, 1, 2391-2404.	5.9	124
10	Synergetic effect of MoS ₂ –RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New Journal of Chemistry, 2016, 40, 5185-5197.	2.8	123
11	ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation. Applied Surface Science, 2018, 447, 802-815.	6.1	123
12	Two dimensional N-doped ZnO-graphitic carbon nitride nanosheets heterojunctions with enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 3988-4002.	7.1	123
13	Synthesis, characterization, EXAFS investigation and antibacterial activities of new ruthenium(III) complexes containing tetradentate Schiff base. Journal of Inorganic Biochemistry, 2004, 98, 2131-2140.	3.5	120
14	Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications. Beilstein Journal of Nanotechnology, 2017, 8, 1571-1600.	2.8	119
15	Perovskite-structured CaTiO ₃ coupled with g-C ₃ N ₄ as a heterojunction photocatalyst for organic pollutant degradation. Beilstein Journal of Nanotechnology, 2018, 9, 671-685.	2.8	116
16	Vortex-Aligned Fullerene Nanowhiskers as a Scaffold for Orienting Cell Growth. ACS Applied Materials & Interfaces, 2015, 7, 15667-15673.	8.0	112
17	Defect-Rich MoS ₂ Ultrathin Nanosheets-Coated Nitrogen-Doped ZnO Nanorod Heterostructures: An Insight into in-Situ-Generated ZnS for Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 5622-5634.	5.1	109
18	Sulfonated graphitic carbon nitride as a highly selective and efficient heterogeneous catalyst for the conversion of biomass-derived saccharides to 5-hydroxymethylfurfural in green solvents. Green Chemistry, 2019, 21, 6012-6026.	9.0	107

#	Article	IF	CITATIONS
19	Multifunctional Cu/Ag quantum dots on TiO 2 nanotubes as highly efficient photocatalysts for enhanced solar hydrogen evolution. Journal of Catalysis, 2017, 350, 226-239.	6.2	103
20	Lanthanide Doped Near Infrared Active Upconversion Nanophosphors: Fundamental Concepts, Synthesis Strategies, and Technological Applications. Small, 2018, 14, e1801304.	10.0	103
21	Trifunctional metal–organic platform for environmental remediation: structural features with peripheral hydroxyl groups facilitate adsorption, degradation and reduction processes. Dalton Transactions, 2019, 48, 915-927.	3.3	99
22	Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles. Journal of Hazardous Materials, 2019, 367, 694-705.	12.4	90
23	Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. Catalysis Reviews - Science and Engineering, 2020, 62, 346-405.	12.9	90
24	Reduced graphene oxide supported MnO2 nanorods as recyclable and efficient adsorptive photocatalysts for pollutants removal. Vacuum, 2019, 160, 333-346.	3.5	86
25	Highly Efficient Visible Light Active 2Dâ€2D Nanocomposites of Nâ€ZnOâ€gâ€C ₃ N ₄ for Photocatalytic Degradation of Diverse Industrial Pollutants. ChemistrySelect, 2018, 3, 1919-1932.	r 1.5	84
26	Enhanced photocatalytic activity of two dimensional ternary nanocomposites of ZnO–Bi2WO6–Ti3C2 MXene under natural sunlight irradiation. Chemosphere, 2022, 287, 132119.	8.2	84
27	Nanocomposite of MoS ₂ -RGO as Facile, Heterogeneous, Recyclable, and Highly Efficient Green Catalyst for One-Pot Synthesis of Indole Alkaloids. ACS Sustainable Chemistry and Engineering, 2017, 5, 8551-8567.	6.7	82
28	Investigations on the Structural, Morphological, Electrical, and Magnetic Properties of CuFe ₂ O ₄ â^`NiO Nanocomposites. Chemistry of Materials, 2008, 20, 429-439.	6.7	74
29	Interplay between Mesocrystals of CaTiO ₃ and Edge Sulfur Atom Enriched MoS ₂ on Reduced Graphene Oxide Nanosheets: Enhanced Photocatalytic Performance under Sunlight Irradiation. ChemPhotoChem, 2020, 4, 427-444.	3.0	72
30	Unraveling the structural and morphological stability of oxygen vacancy engineered leaf-templated CaTiO ₃ towards photocatalytic H ₂ evolution and N ₂ fixation reactions. Journal of Materials Chemistry A, 2021, 9, 17006-17018.	10.3	72
31	Oxidized graphitic carbon nitride as a sustainable metal-free catalyst for hydrogen transfer reactions under mild conditions. Green Chemistry, 2020, 22, 5084-5095.	9.0	71
32	Sulfonic acid functionalized graphitic carbon nitride as solid acid–base bifunctional catalyst for Knoevenagel condensation and multicomponent tandem reactions. Materials Chemistry Frontiers, 2021, 5, 6265-6278.	5.9	70
33	Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Applied Surface Science, 2020, 514, 145930.	6.1	68
34	Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability, 2021, 13, 100066.	4.1	66
35	Sunlight driven photocatalytic reduction of 4-nitrophenol on Pt decorated ZnO-RGO nanoheterostructures. Materials Chemistry and Physics, 2018, 214, 364-376.	4.0	64
36	Photocatalytic Reduction and Recognition of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Engineering Chemistry Research, 2020, 59, 8538-8550.	3.7	63

#	Article	IF	CITATIONS
37	Nanoporous Carbon Sensor with Cage-in-Fiber Structure: Highly Selective Aniline Adsorbent toward Cancer Risk Management. ACS Applied Materials & Interfaces, 2013, 5, 2930-2934.	8.0	62
38	EXAFS and XANES Investigations of CuFe ₂ O ₄ Nanoparticles and CuFe ₂ O ₄ â^'MO ₂ (M = Sn, Ce) Nanocomposites. Journal of Physical Chemistry C, 2007, 111, 16724-16733.	3.1	60
39	Potassium-Functionalized Graphitic Carbon Nitride Supported on Reduced Graphene Oxide as a Sustainable Catalyst for Knoevenagel Condensation. ACS Applied Nano Materials, 2018, 1, 6711-6723.	5.0	60
40	Visible-Light-Driven Selective Oxidation of Biomass-Derived HMF to DFF Coupled with H ₂ Generation by Noble Metal-Free Zn _{0.5} Cd _{0.5} S/MnO ₂ Heterostructures. ACS Applied Energy Materials, 2020, 3, 7138-7148.	5.1	60
41	Carbon‣upportâ€Based Heterogeneous Nanocatalysts: Synthesis and Applications in Organic Reactions. Asian Journal of Organic Chemistry, 2019, 8, 1263-1305.	2.7	59
42	A metal–organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton Transactions, 2018, 47, 1488-1497.	3.3	58
43	Enhancement of Luminescence Intensity in Red Emitting NaYF ₄ :Yb/Ho/Mn Upconversion Nanophosphors by Variation of Reaction Parameters. Journal of Physical Chemistry C, 2017, 121, 11783-11793.	3.1	57
44	Ammonia-Doped Polyaniline–Graphitic Carbon Nitride Nanocomposite as a Heterogeneous Green Catalyst for Synthesis of Indole-Substituted 4 <i>H</i> -Chromenes. ACS Omega, 2018, 3, 12163-12178.	3.5	57
45	Preparation, spectral characterization, electrochemistry, EXAFS, antibacterial and catalytic activity of new ruthenium (III) complexes containing ONS donor ligands with triphenylphosphine/arsine. Applied Organometallic Chemistry, 2006, 20, 203-213.	3.5	55
46	Computational de Novo Design and Characterization of a Protein That Selectively Binds a Highly Hyperpolarizable Abiological Chromophore. Journal of the American Chemical Society, 2013, 135, 13914-13926.	13.7	55
47	<i>Gladiolus dalenii</i> Based Bioinspired Structured Surface via Soft Lithography and Its Application in Water Vapor Condensation and Fog Harvesting. ACS Sustainable Chemistry and Engineering, 2018, 6, 6981-6993.	6.7	52
48	Strategic combination of ultra violet-visible-near infrared light active materials towards maximum utilization of full solar spectrum for photocatalytic chromium reduction. Chemosphere, 2021, 267, 128884.	8.2	52
49	Atmospheric pressure conversion of carbon dioxide to cyclic carbonates using a metal-free Lewis acid-base bifunctional heterogeneous catalyst. Journal of CO2 Utilization, 2021, 51, 101646.	6.8	52
50	Synthesis, characterization and optical limiting properties of a gallium phthalocyanine dimer. Journal of Materials Chemistry, 2005, 15, 683.	6.7	50
51	Towards utilization of full solar light spectrum using green plasmonic Au–TiO x photocatalyst at ambient conditions. Surfaces and Interfaces, 2018, 11, 98-106.	3.0	50
52	Plasmon induced hot electron generation in two dimensional carbonaceous nanosheets decorated with Au nanostars: enhanced photocatalytic activity under visible light. Materials Chemistry Frontiers, 2021, 5, 1448-1467.	5.9	50
53	LaSrCoFeO and Fe2O3/LaSrCoFeO Powders:Â Synthesis and Characterization. Chemistry of Materials, 2007, 19, 2796-2808.	6.7	49
54	Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties. Journal of Alloys and Compounds, 2017, 724, 481-491.	5.5	49

#	Article	IF	CITATIONS
55	Fabrication of highly sensitive biomimetic SERS substrates for detection of herbicides in trace concentration. Sensors and Actuators B: Chemical, 2018, 262, 710-719.	7.8	49
56	Fabrication of nanoheterostructures of boron doped ZnO-MoS2 with enhanced photostability and photocatalytic activity for environmental remediation applications. Vacuum, 2019, 163, 88-98.	3.5	49
57	Three-Dimensional Carbonaceous Aerogels Embedded with Rh-SrTiO ₃ for Enhanced Hydrogen Evolution Triggered by Efficient Charge Transfer and Light Absorption. ACS Applied Energy Materials, 2020, 3, 12134-12147.	5.1	49
58	Highly Directional 1D Supramolecular Assembly of New Diketopyrrolopyrrole-Based Gel for Organic Solar Cell Applications. Langmuir, 2016, 32, 4346-4351.	3.5	48
59	Sunlight driven methanol oxidation by anisotropic plasmonic Au nanostructures supported on amorphous titania: Influence of morphology on photocatalytic activity. Materials Letters, 2019, 245, 45-48.	2.6	45
60	Highly Dispersed Mixed Zirconia and Hafnia Nanoparticles in a Silica Matrix: First Example of a ZrO2 -HfO2 -SiO2 Ternary Oxide System. Advanced Functional Materials, 2007, 17, 1671-1681.	14.9	42
61	Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures. Beilstein Journal of Nanotechnology, 2016, 7, 1684-1697.	2.8	42
62	Sea urchin shaped ZnO coupled with MoS2 and polyaniline as highly efficient photocatalysts for organic pollutant decomposition and hydrogen evolution. Ceramics International, 2021, 47, 10301-10313.	4.8	42
63	Highly efficient visible-light-driven reduction of Cr(<scp>vi</scp>) from water by porphyrin-based metal–organic frameworks: effect of band gap engineering on the photocatalytic activity. Catalysis Science and Technology, 2020, 10, 7724-7733.	4.1	41
64	Influence of different bismuth oxyhalides on the photocatalytic activity of graphitic carbon nitride: a comparative study under natural sunlight. Materials Advances, 2020, 1, 1262-1272.	5.4	40
65	Design of noble metal-free CoTiO3/Zn0.5Cd0.5S heterostructure photocatalyst for selective synthesis of furfuraldehyde combined with H2production. Journal of Colloid and Interface Science, 2022, 608, 1040-1050.	9.4	40
66	CadmiumO-alkylxanthates as CVD precursors of CdS: a chemical characterization. Applied Organometallic Chemistry, 2005, 19, 59-67.	3.5	38
67	Design of noble metal-free NiTiO3/ZnIn2S4 heterojunction photocatalyst for efficient visible-light-assisted production of H2 and selective synthesis of 2,5-Bis(hydroxymethyl)furan. Journal of Colloid and Interface Science, 2022, 615, 346-356.	9.4	38
68	Integration of Bi4O5I2 nanoparticles with ZnO: Impressive visible-light-induced systems for elimination of aqueous contaminants. Journal of the Taiwan Institute of Chemical Engineers, 2021, 119, 177-186.	5.3	36
69	Borophene and Boronâ€Based Nanosheets: Recent Advances in Synthesis Strategies and Applications in the Field of Environment and Energy. Advanced Materials Interfaces, 2021, 8, 2100045.	3.7	35
70	Tuning the surface and optical properties of graphitic carbon nitride by incorporation of alkali metals (Na, K, Cs and Rb): Effect on photocatalytic removal of organic pollutants. Chemosphere, 2022, 287, 131988.	8.2	35
71	A Dualâ€Characteristic Bidentate Ligand for a Ternary Mononuclear Europium(III) Molecular Complex – Synthesis, Photophysical, Electrochemical, and Theoretical Study. European Journal of Inorganic Chemistry, 2016, 2016, 3900-3911.	2.0	33
72	2Dâ€2D Nanocomposite of MoS ₂ â€Graphitic Carbon Nitride as Multifunctional Catalyst for Sustainable Synthesis of C3â€Functionalized Indoles. ChemCatChem, 2018, 10, 3121-3132.	3.7	33

#	Article	IF	CITATIONS
73	Nanoarchitectonics of vanadium carbide MXenes for separation and catalytic degradation of contaminants. Separation and Purification Technology, 2022, 292, 121032.	7.9	33
74	Amine-functionalized, porous silica-coated NaYF4:Yb/Er upconversion nanophosphors for efficient delivery of doxorubicin and curcumin. Materials Science and Engineering C, 2019, 96, 86-95.	7.3	32
75	Influence of Lewis and BrÃ,nsted acidic sites on graphitic carbon nitride catalyst for aqueous phase conversion of biomass derived monosaccharides to 5-hydroxymethylfurfural. Carbon, 2021, 183, 984-998.	10.3	32
76	Controlled synthesis, bioimaging and toxicity assessments in strong red emitting Mn ²⁺ doped NaYF ₄ :Yb ³⁺ /Ho ³⁺ nanophosphors. RSC Advances, 2016, 6, 53698-53704.	3.6	31
77	Selective and efficient aerobic oxidation of benzyl alcohols using plasmonic Au-TiO2: Influence of phase transformation on photocatalytic activity. Applied Surface Science, 2022, 578, 151953.	6.1	30
78	Investigations on the fog harvesting mechanism of Bermuda grass (Cynodon dactylon). Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 224, 59-65.	1.2	29
79	Zr and Hf oxoclusters as building blocks for the preparation of nanostructured hybrid materials and binary oxides MO2–SiO2(M = Hf, Zr). Journal of Materials Chemistry, 2005, 15, 1954.	6.7	28
80	Clustered Au on TiO ₂ Snowman-Like Nanoassemblies for Photocatalytic Applications. ChemistrySelect, 2016, 1, 2963-2970.	1.5	28
81	Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging. Journal of Materials Science, 2017, 52, 5738-5750.	3.7	27
82	Processable dispersions of photocatalytically active nanosheets derived from titanium diboride: self assembly into hydrogels and paper-like macrostructures. Nanoscale, 2020, 12, 17121-17131.	5.6	27
83	Homogeneously embedded Pt nanoclusters on amorphous titania matrix as highly efficient visible light active photocatalyst material. Materials Chemistry and Physics, 2016, 179, 129-136.	4.0	26
84	Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products. Catalysis Communications, 2022, 168, 106467.	3.3	26
85	Gold Deposited Plant Leaves for SERS: Role of Surface Morphology, Wettability and Deposition Technique in Determining the Enhancement Factor and Sensitivity of Detection. ChemistrySelect, 2017, 2, 165-174.	1.5	25
86	Effects of electron-withdrawing groups in imidazole-phenanthroline ligands and their influence on the photophysical properties of Eu ^{III} complexes for white light-emitting diodes. New Journal of Chemistry, 2017, 41, 9826-9839.	2.8	25
87	Fog-Harvesting Properties of Dryopteris marginata: Role of Interscalar Microchannels in Water-Channeling. Biomimetics, 2018, 3, 7.	3.3	24
88	Bioderived carbon supported bismuth molybdate nanocomposites as bifunctional catalysts for removal of organic pollutants: Adsorption and photocatalytic studies. Materials Letters, 2021, 302, 130455.	2.6	24
89	Nanoarchitectonics of phosphorylated graphitic carbon nitride for sustainable, selective and metal-free synthesis of primary amides. Chemical Engineering Journal, 2022, 431, 133695.	12.7	24
90	Acid functionalized hydrochar as heterogeneous catalysts for solventless synthesis of biofuel precursors. Green Chemistry, 2022, 24, 898-910.	9.0	24

#	Article	IF	CITATIONS
91	Hydrogen-bond-driven â€~homogeneous intercalation' for rapid, reversible, and ultra-precise actuation of layered clay nanosheets. Chemical Communications, 2013, 49, 3631.	4.1	23
92	Control of the Orientational Order and Nonlinear Optical Response of the "Push-Pull―Chromophore RuPZn via Specific Incorporation into Densely Packed Monolayer Ensembles of an Amphiphilic Four-Helix Bundle Peptide: Characterization of the Peptideâ^Chromophore Complexes. Journal of the American Chemical Society, 2010, 132, 11083-11092.	13.7	22
93	Bioinspired Dip Catalysts for Suzuki–Miyaura Crossâ€Coupling Reactions: Effect of Scaffold Architecture on the Performance of the Catalyst. Advanced Materials Interfaces, 2017, 4, 1700604.	3.7	22
94	Sub-Picomolar Recognition of Cr ³⁺ through Bioinspired Organic–Inorganic Ensemble Utilization. ACS Sensors, 2016, 1, 663-669.	7.8	21
95	Preferential intermolecular interactions lead to chiral recognition: enantioselective gel formation and collapse. Chemical Communications, 2018, 54, 11407-11410.	4.1	21
96	Selective and Sensitive Fluorescent Detection of Picric Acid by New Pyrene and Anthracene Based Copper Complexes. Journal of Fluorescence, 2016, 26, 2041-2046.	2.5	20
97	Photocatalytic Degradation of Organic Pollutants in Water Using Graphene Oxide Composite. , 2019, , 413-438.		20
98	Efficient photocatalytic generation of hydrogen by twin Zn Cd S nanorods decorated with noble metal-free co-catalyst and reduction of 4-nitrophenol in water. Applied Surface Science, 2021, 550, 149367.	6.1	20
99	Influence of oxygen vacancy defects on Aurivillius phase layered perovskite oxides of bismuth towards photocatalytic environmental remediation. Nanotechnology, 2022, 33, 275702.	2.6	20
100	Synthesis and characterization of zinc bis(O-isopropylxanthate) as a single-source chemical vapor deposition precursor for ZnS. Applied Organometallic Chemistry, 2005, 19, 1002-1009.	3.5	19
101	Manipulation of thin film assemblies: Recent progress and novel concepts. Current Opinion in Colloid and Interface Science, 2011, 16, 459-469.	7.4	19
102	Control of the Orientational Order and Nonlinear Optical Response of the "Pushâ^'Pull― Chromophore RuPZn via Specific Incorporation into Densely Packed Monolayer Ensembles of an Amphiphilic 4-Helix Bundle Peptide: Second Harmonic Generation at High Chromophore Densities. Journal of the American Chemical Society, 2010, 132, 9693-9700.	13.7	18
103	EXAFS Spectroscopy – Fundamentals, Measurement Techniques, Data Evaluation and Applications in the Field of Phthalocyanines. Zeitschrift Fur Physikalische Chemie, 2004, 218, 1-16.	2.8	17
104	Cascade Reaction-Based Chemiresistive Array for Ethylene Sensing. ACS Sensors, 2020, 5, 1405-1410.	7.8	17
105	Ultrathin Au–Ag Heterojunctions on Nanoarchitectonics Based Biomimetic Substrates for Dip Catalysis. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1954-1966.	3.7	17
106	Water-stable Zn-based metal-organic framework with hydrophilic-hydrophobic surface for selective adsorption and sensitive detection of oxo-anions and pesticides in aqueous medium. Journal of Environmental Chemical Engineering, 2022, 10, 106667.	6.7	17
107	Nanoarchitectonics of phosphomolybdic acid supported on activated charcoal for selective conversion of furfuryl alcohol and levulinic acid to alkyl levulinates. Molecular Catalysis, 2022, 519, 112135.	2.0	17
108	Structural Investigations on the Hydrolysis and Condensation Behavior of Pure and Chemically Modified Alkoxides. 1. Transition Metal (Hf and Ta) Alkoxides. Journal of Physical Chemistry B, 2007, 111, 7501-7518.	2.6	16

#	Article	IF	CITATIONS
109	Bioinspired Functional Surfaces for Technological Applications. Journal of Molecular and Engineering Materials, 2016, 04, 1640006.	1.8	16
110	Plant leaves as natural green scaffolds for palladium catalyzed Suzuki–Miyaura coupling reactions. Bioinspiration and Biomimetics, 2017, 12, 016010.	2.9	16
111	Coordination networks for the recognition of oxo-anions. Dalton Transactions, 2021, 50, 8273-8291.	3.3	16
112	Interferometric enhancement of x-ray reflectivity from unperturbed Langmuir monolayers of amphiphiles at the liquid-gas interface. Physical Review E, 2010, 81, 021604.	2.1	15
113	Bioinspired 3 D Surfaceâ€Enhanced Raman Spectroscopy Substrates for Surface Plasmon Driven Photoxidation Reactions: Role of Catalyst and Substrate in Controlling the Selectivity of Product Formation. ChemCatChem, 2018, 10, 975-979.	3.7	15
114	Controlling the kinetics of visible-light-induced photocatalytic performance of gold decorated graphitic carbon nitride nanocomposite using different proteins. Journal of Environmental Chemical Engineering, 2021, 9, 105147.	6.7	15
115	Structural Investigations on the Hydrolysis and Condensation Behavior of Pure and Chemically Modified Alkoxides. 2. Germanium Alkoxides. Journal of Physical Chemistry B, 2007, 111, 7519-7528.	2.6	14
116	Scalable Production of Ultrathin Boron Nanosheets from a Lowâ€Cost Precursor. Advanced Materials Interfaces, 2022, 9, .	3.7	14
117	Synthesis, EPR, electrochemistry and EXAFS studies of ruthenium(III) complexes with a symmetrical tetradentate N2O2 Schiff base. Inorganica Chimica Acta, 2006, 359, 1114-1120.	2.4	13
118	Amorphous titania matrix impregnated with Ag nanoparticles as a highly efficient visible- and sunlight-active photocatalyst material. Materials Technology, 2017, 32, 461-471.	3.0	11
119	Au Nanoparticle Aggregates Assembled on 3D Mirror-like Configuration Using Canna generalis Leaves for SERS Applications. Colloids and Interface Science Communications, 2017, 18, 9-12.	4.1	11
120	Structural evolution and effects of calcium doping on nanophasic LaCoO3 powders prepared by non-alkoxidic sol–gel technique. Journal of Materials Chemistry, 2005, 15, 2020.	6.7	10
121	Shape Selective Au-TiO2 Nanocomposites for Photocatalytic Applications. Materials Today: Proceedings, 2016, 3, 1939-1948.	1.8	10
122	Nanohybrid of ZnOâ€RGO as Heterogeneous Green Catalyst for the Synthesis of Medicinally Significant Indole Alkaloids and Their Derivatives. ChemistrySelect, 2018, 3, 314-320.	1.5	10
123	Perovskite-Based Materials for Photocatalytic Environmental Remediation. Environmental Chemistry for A Sustainable World, 2019, , 139-165.	0.5	10
124	Influence of preparation technique and iron doping on the structure and reactivity of mixed Fe–Ti–O nanocomposites. Materials Chemistry and Physics, 2005, 92, 394-402.	4.0	9
125	Core-Shell Structures of Upconversion Nanocrystals Coated with Silica for Near Infrared Light Enabled Optical Imaging of Cancer Cells. Micromachines, 2018, 9, 400.	2.9	9
126	Bisindolemethane derivatives as highly potent anticancer agents: Synthesis, medicinal activity evaluation, cell-based compound discovery, and computational target predictions. Computers in Biology and Medicine, 2020, 116, 103574.	7.0	9

VENKATA KRISHNAN

#	Article	IF	CITATIONS
127	Mercapto-decorated Zn-based metal-organic framework embedded nanofibrous membrane for oxo-anions treatment in aqueous solution. Chemical Engineering Journal, 2022, 443, 136212.	12.7	9
128	Upconversion Luminescent Materialâ€Based Inorganicâ€Organic Hybrid Sensing System for the Selective Detection of Hydrazine in Environmental Samples. ChemistrySelect, 2018, 3, 1793-1800.	1.5	8
129	Beetle wing inspired fabrication of nanojunction based biomimetic SERS substrates for sensitive detection of analytes. Materials Technology, 2022, 37, 112-123.	3.0	8
130	Two-dimensional MXene-based heterostructures for photocatalysis. , 2020, , 247-267.		8
131	Solâ^'Gel Processed Diamine(diphosphine)ruthenium(II) Complexes for the Catalytic Hydrogenation of α,β-Unsaturated Ketones1,2. Chemistry of Materials, 2005, 17, 3951-3959.	6.7	7
132	Portable UV-visible spectrometer for measuring absorbance and dichroism of Langmuir monolayers at air-water interfaces Review of Scientific Instruments, 2009, 80, 033102.	1.3	7
133	Acentric 2-D Ensembles of D-br-A Electron-Transfer Chromophores via Vectorial Orientation within Amphiphilic <i>n</i> -Helix Bundle Peptides for Photovoltaic Device Applications. Langmuir, 2012, 28, 3227-3238.	3.5	7
134	Conformation induced discrimination between picric acid and nitro derivatives/anions with a Cu-pyrene array: the first decision making photonic device. RSC Advances, 2013, 3, 21365.	3.6	7
135	Metal-organic frameworks for photocatalytic degradation of pollutants. , 2020, , 91-126.		7
136	New Ni-Anthracene Complex for Selective and Sensitive Detection of 2,4,6-Trinitrophenol. International Journal of Spectroscopy, 2018, 2018, 1-5.	1.6	6
137	Mechanistic Studies on the Nucleation of Zinc Sulphide Nanoparticles by Means of XAFS Spectroscopy. Zeitschrift Fur Physikalische Chemie, 2008, 222, 655-669.	2.8	4
138	Structural investigations of hexadecafluoro(phthalocyaninato)ruthenium(II) F16PcRu with EXAFS spectroscopy. Journal of Porphyrins and Phthalocyanines, 2011, 15, 598-601.	0.8	4
139	Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates. EPJ Web of Conferences, 2017, 139, 00006.	0.3	3
140	SERS Application of Noble Metal–Metal Oxide Hybrid Nanoparticles. , 2019, , 457-486.		2
141	Nanomaterials for Photocatalytic Decomposition of Endocrine Disruptors in Water. , 2021, , 299-320.		2
142	Upconversion nanomaterials for photocatalytic applications. , 2022, , 391-406.		2
143	Structural studies on ruthenium(II) complexes used in interphase catalysis for the hydrogenation of ketones. Applied Organometallic Chemistry, 2007, 21, 161-171.	3.5	1
144	Surface-modified carbonaceous nanomaterials for CO2 hydrogenation and fixation. , 2022, , 223-249.		1

#	Article	IF	CITATIONS
145	Structural Investigations on Nanocomposite Mixed Metal Oxide Powders Used in Surface Catalysis. Zeitschrift Fur Physikalische Chemie, 2008, 222, 1023-1038.	2.8	Ο
146	A New Approach to the Structural Investigation of the Voltage-Sensitive Domain of Voltage-Gated Cation Channels as a Function of the Transmembrane Voltage. Biophysical Journal, 2010, 98, 621a.	0.5	0
147	Nanostructured Heterogeneous Catalysts for Biomass Conversion in Green Solvents. , 2021, , 1041-1064.		0
148	Nanostructured Heterogeneous Catalysts for Biomass Conversion in Green Solvents. , 2020, , 1-24.		0