
Dongdong Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4527557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of pyrolysis temperature on char structure and chemical speciation of alkali and alkaline earth metallic species in biochar. Fuel Processing Technology, 2016, 141, 54-60.	3.7	248
2	Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H 2 O or CO 2. Chemical Engineering Journal, 2016, 306, 422-432.	6.6	169
3	Catalytic mechanism of ion-exchanging alkali and alkaline earth metallic species on biochar reactivity during CO2/H2O gasification. Fuel, 2018, 212, 523-532.	3.4	168
4	Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption. Chemical Engineering Journal, 2021, 410, 127707.	6.6	163
5	Mechanism of in-situ dynamic catalysis and selective deactivation of H2O-activated biochar for biomass tar reforming. Fuel, 2020, 279, 118450.	3.4	113
6	Effects of H2O and CO2 on the homogeneous conversion and heterogeneous reforming of biomass tar over biochar. International Journal of Hydrogen Energy, 2017, 42, 13070-13084.	3.8	103
7	Improvement and maintenance of biochar catalytic activity for in-situ biomass tar reforming during pyrolysis and H2O/CO2 gasification. Fuel Processing Technology, 2018, 172, 106-114.	3.7	77
8	Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties. Energy, 2018, 152, 166-177.	4.5	61
9	Roles and fates of K and Ca species on biochar structure during in-situ tar H2O reforming over nascent biochar. International Journal of Hydrogen Energy, 2017, 42, 21686-21696.	3.8	60
10	Changes of biochar physiochemical structures during tar H2O and CO2 heterogeneous reforming with biochar. Fuel Processing Technology, 2017, 165, 72-79.	3.7	58
11	Adsorption-enrichment characterization of CO2 and dynamic retention of free NH3 in functionalized biochar with H2O/NH3·H2O activation for promotion of new ammonia-based carbon capture. Chemical Engineering Journal, 2021, 409, 128193.	6.6	58
12	Catalytic mechanism of Na on coal pyrolysis-derived carbon black formation: Experiment and DFT simulation. Fuel Processing Technology, 2021, 224, 107011.	3.7	51
13	Functional Biochar Synergistic Solid/Liquid-Phase CO ₂ Capture: A Review. Energy & Fuels, 2022, 36, 2945-2970.	2.5	49
14	Mechanism of catalytic tar reforming over biochar: Description of volatile-H2O-char interaction. Fuel, 2020, 275, 117954.	3.4	45
15	Experimental comparison of biochar species on in-situ biomass tar H2O reforming over biochar. International Journal of Hydrogen Energy, 2017, 42, 24035-24046.	3.8	43
16	Development of a Multistage in Situ Reaction Analyzer Based on a Micro Fluidized Bed and Its Suitability for Rapid Gas–Solid Reactions. Energy & Fuels, 2016, 30, 6021-6033.	2.5	40
17	In-situ steam reforming of biomass tar over sawdust biochar in mild catalytic temperature. Biomass and Bioenergy, 2017, 107, 261-270.	2.9	40
18	Review of Carbon Fixation Evaluation and Emission Reduction Effectiveness for Biochar in China. Energy & Fuels, 2020, 34, 10583-10606.	2.5	39

#	Article	IF	CITATIONS
19	Effects of flue gases (CO/CO2/SO2/H2O/O2) on NO-Char interaction at high temperatures. Energy, 2019, 174, 519-525.	4.5	38
20	Synergetic effects of biochar structure and AAEM species on reactivity of H2O-activated biochar from cyclone air gasification. International Journal of Hydrogen Energy, 2017, 42, 16045-16053.	3.8	37
21	Characteristics of Gas–Liquid–Solid Products in Corn Straw Gasification: Effect of the Char–Tar–H ₂ 0 Interaction. Energy & Fuels, 2019, 33, 9974-9984.	2.5	37
22	Synergistic mechanism of biochar-nano TiO2 adsorption-photocatalytic oxidation of toluene. Fuel Processing Technology, 2022, 229, 107200.	3.7	35
23	The intrinsic kinetics of methane steam reforming over a nickel-based catalyst in a micro fluidized bed reaction system. International Journal of Hydrogen Energy, 2020, 45, 1615-1628.	3.8	34
24	Catalytic Mechanism of K and Ca on the Volatile–Biochar Interaction for Rapid Pyrolysis of Biomass: Experimental and Simulation Studies. Energy & Fuels, 2020, 34, 9741-9753.	2.5	34
25	Mechanism of biochar-gas-tar-soot formation during pyrolysis of different biomass feedstocks: Effect of inherent metal species. Fuel, 2021, 293, 120409.	3.4	34
26	Formation and O2/CO2 combustion characteristics of real-environment coal char in high-temperature oxy-fuel conditions. Journal of the Energy Institute, 2019, 92, 1670-1682.	2.7	30
27	Effects of Pressure on the Characteristics of Bituminous Coal Pyrolysis Char Formed in a Pressurized Drop Tube Furnace. Energy & Fuels, 2019, 33, 12219-12226.	2.5	27
28	Effects of total pressure and CO2 partial pressure on the physicochemical properties and reactivity of pressurized coal char produced at rapid heating rate. Energy, 2020, 208, 118297.	4.5	27
29	Effects of volatile–char interactions on char during pyrolysis of rice husk at mild temperatures. Bioresource Technology, 2016, 219, 702-709.	4.8	24
30	Mass transfer in ammonia-based CO2 absorption in bubbling reactor under static magnetic field. Chemical Engineering Journal, 2018, 338, 450-456.	6.6	24
31	Thermal evolution of gas-liquid-solid products and migration regulation of C/H/O elements during biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105128.	2.6	24
32	Mechanism of coke formation and corresponding gas fraction characteristics in biochar-catalyzed tar reforming during Corn Straw Pyrolysis. Fuel Processing Technology, 2021, 221, 106903.	3.7	23
33	Interaction mechanism of in-situ catalytic coal H2O-gasification over biochar catalysts for H2O-H2-tar reforming and active sites conversion. Fuel Processing Technology, 2022, 233, 107307.	3.7	23
34	Carbon material-TiO2 for photocatalytic reduction of CO2 and degradation of VOCs: A critical review. Fuel Processing Technology, 2022, 231, 107261.	3.7	22
35	Impact of Sodium on the Formation Mechanism and Physicochemical Properties of Coal-Derived Soot. Energy & Fuels, 2020, 34, 1453-1466.	2.5	21
36	Evolution of Char Structure During In-Situ Biomass Tar Reforming: Importance of the Coupling Effect Among the Physical-Chemical Structure of Char-Based Catalysts. Catalysts, 2019, 9, 711.	1.6	19

Dongdong Feng

#	Article	IF	CITATIONS
37	Effect of steam on coke deposition during the tar reforming from corn straw pyrolysis over biochar. Fuel Processing Technology, 2021, 224, 107007.	3.7	19
38	Combustion characteristics of char from pyrolysis of Zhundong sub-bituminous coal under O2/steam atmosphere: Effects of mineral matter. International Journal of Greenhouse Gas Control, 2019, 80, 54-60.	2.3	18
39	Synergies and progressive effects of H2O/CO2 and nascent tar on biochar structure and reactivity during gasification. Fuel Processing Technology, 2017, 168, 1-10.	3.7	17
40	Effect of different forms of Na and temperature on soot formation during lignite pyrolysis. Fuel, 2020, 280, 118514.	3.4	17
41	In-situ decoupling effect of H2O on the whole process of coal gasification in MFBRA and TC-FTIR-MS. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104744.	2.6	16
42	Behavior Study of Migration and Transformation of Heavy Metals during Oily Sludge Pyrolysis. Energy & Fuels, 2022, 36, 8311-8322.	2.5	16
43	Steam Gasification of Sawdust Biochar Influenced by Chemical Speciation of Alkali and Alkaline Earth Metallic Species. Energies, 2018, 11, 205.	1.6	15
44	Review on thermal conversion characteristics of coal in O2/H2O atmosphere. Fuel Processing Technology, 2022, 232, 107266.	3.7	14
45	Thermal synergistic treatment of municipal solid waste incineration (MSWI) fly ash and fluxing agent in specific situation: Melting characteristics, leaching characteristics of heavy metals. Fuel Processing Technology, 2022, 233, 107311.	3.7	14
46	Study on the effect of H2O on the formation of CO in the counterflow diffusion flame of H2/CO syngas in O2/H2O. Fuel, 2018, 234, 516-525.	3.4	11
47	Influence of preheating and burner geometry on modeling the attachment of laminar coflow CH4/air diffusion flames. Combustion and Flame, 2018, 191, 381-393.	2.8	11
48	Study on the thermal conversion characteristics of demineralized coal char under pressurized O2/H2O atmosphere. Fuel, 2022, 310, 122429.	3.4	11
49	Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants. Journal of Physical Chemistry A, 2017, 121, 4868-4880.	1.1	10
50	Effect of high-temperature and microwave expanding modification on reactivity of coal char for char-NO interaction. Science of the Total Environment, 2021, 760, 144028.	3.9	10
51	System modification and thermal efficiency study on the semi-closed cycle of supercritical carbon dioxide. Energy Conversion and Management, 2021, 241, 114272.	4.4	10
52	Experimental study of nitrogen conversion during char combustion under a pressurized O2/H2O atmosphere. Fuel, 2022, 311, 122529.	3.4	10
53	Roles of Ion-Exchangeable Sodium in the Conversion Process of Tar to Soot during Rapid Pyrolysis of Two Brown Coals in a Drop-Tube Reactor. ACS Omega, 2020, 5, 9078-9092.	1.6	9
54	Migration of Alkali and Alkaline Earth Metallic Species and Structure Analysis of Sawdust Pyrolysis Biochar. Korean Chemical Engineering Research, 2016, 54, 659-664.	0.2	9

Dongdong Feng

#	ARTICLE	IF	CITATIONS
55	Optimization of the process of antisolvent crystallization of carbonized ammonia with a low carbon-to-nitrogen ratio. Fuel Processing Technology, 2017, 155, 59-67.	3.7	8
56	Experimental study of cyclone pyrolysis – Suspended combustion air gasification of biomass. Bioresource Technology, 2017, 243, 1241-1246.	4.8	8
57	Effect of pressure on the structure and reactivity of demineralized coal during O2/H2O thermal conversion process. Energy, 2022, 244, 122632.	4.5	8
58	Characteristics of rice husk gasification in cyclone pyrolysis-suspended combustion system. Thermal Science, 2018, 22, 439-447.	0.5	7
59	Study on regenerative process of the new carbon capture technique based on antisolvent crystallization to strengthen crystallization. Canadian Journal of Chemical Engineering, 2017, 95, 1979-1984.	0.9	4
60	Effect of microbubbles on preparation of precipitated silica by carbonization: physical-chemical structure, kinetic parameters and mass transfer characteristics. Carbon Capture Science & Technology, 2021, 1, 100002.	4.9	4
61	Effect of magnetic field on the ammoniaâ€based CO ₂ absorption process. Canadian Journal of Chemical Engineering, 2018, 96, 1462-1467.	0.9	3
62	Experimental study Charâ€NO reduction characteristics at elevated pressure. Asia-Pacific Journal of Chemical Engineering, 0, , e2730.	0.8	3
63	The Thermal Swelling Properties of Plant Chemical Alcohol Waste Liquid. Energies, 2019, 12, 4184.	1.6	2
64	Combustion Characteristics of Plant Chemical Polyol Waste Liquor in a Pilot Water-Cooled Incinerator. Energies, 2019, 12, 4369.	1.6	0
65	Mechanism of In-Situ Catalytic Cracking of Biomass Tar over Biochar with Multiple Active Sites. , 2020, , .		0
66	Biochar Synergistic New Ammonia Capture of CO ₂ and High-Value Utilization of Intermediate Products. , 0, , .		0