Sreenivasan Ponnambalam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4527431/publications.pdf

Version: 2024-02-01

94 papers 3,682 citations

37 h-index

108046

57 g-index

98 all docs 98 docs citations 98 times ranked 6087 citing authors

#	Article	IF	CITATIONS
1	VEGFR endocytosis: Implications for angiogenesis. Progress in Molecular Biology and Translational Science, 2023, , 109-139.	0.9	1
2	Purification and Analysis of Circulating Lipid Particles. Methods in Molecular Biology, 2022, 2419, 193-212.	0.4	1
3	Affinity purification of fibrinogen using an Affimer column. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130115.	1.1	O
4	Monitoring VEGF-Stimulated Calcium Ion Flux in Endothelial Cells. Methods in Molecular Biology, 2022, 2475, 113-124.	0.4	0
5	TDO2 modulates liver cancer cell migration and invasion via the Wnt5a pathway. International Journal of Oncology, 2022, 60, .	1.4	8
6	Fibrinogen interaction with complement C3: a potential therapeutic target to reduce thrombosis risk. Haematologica, 2021, 106, 1616-1623.	1.7	9
7	Prognostic value of members of NFAT family for pan-cancer and a prediction model based on NFAT2 in bladder cancer. Aging, 2021, 13, 13876-13897.	1.4	5
8	Regulation of follistatin-like 3 expression by miR-486-5p modulates gastric cancer cell proliferation, migration and tumor progression. Aging, 2021, 13, 20302-20318.	1.4	9
9	Chemical activation of the Piezo1 channel drives mesenchymal stem cell migration via inducing ATP release and activation of P2 receptor purinergic signaling. Stem Cells, 2020, 38, 410-421.	1.4	60
10	ATF-2 and Tpl2 regulation of endothelial cell cycle progression and apoptosis. Cellular Signalling, 2020, 66, 109481.	1.7	4
11	Scavenger Receptors as Biomarkers and Therapeutic Targets in Cardiovascular Disease. Cells, 2020, 9, 2453.	1.8	9
12	Structural Basis for Vascular Endothelial Growth Factor Receptor Activation and Implications for Disease Therapy. Biomolecules, 2020, 10, 1673.	1.8	43
13	Tpl2 is required for VEGF-A-stimulated signal transduction and endothelial cell function. Biology Open, 2019, 8, .	0.6	5
14	IL-36 \hat{l}^3 Is a Strong Inducer of IL-23 in Psoriatic Cells and Activates Angiogenesis. Frontiers in Immunology, 2018, 9, 200.	2.2	58
15	Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells, 2018, 7, 22.	1.8	43
16	Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function. Biology Open, 2017, 6, 1404-1415.	0.6	15
17	Affimer proteins are versatile and renewable affinity reagents. ELife, 2017, 6, .	2.8	151
18	VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biology Open, 2016, 5, 571-583.	0.6	43

#	Article	IF	CITATIONS
19	Extracellular and Luminal pH Regulation by Vacuolar H+-ATPase Isoform Expression and Targeting to the Plasma Membrane and Endosomes. Journal of Biological Chemistry, 2016, 291, 8500-8515.	1.6	37
20	Sorting Motifs in the Cytoplasmic Tail of the Immunomodulatory E3/49K Protein of Species D Adenoviruses Modulate Cell Surface Expression and Ectodomain Shedding. Journal of Biological Chemistry, 2016, 291, 6796-6812.	1.6	11
21	Purinergic and Store-Operated Ca2+ Signaling Mechanisms in Mesenchymal Stem Cells and Their Roles in ATP-Induced Stimulation of Cell Migration. Stem Cells, 2016, 34, 2102-2114.	1.4	39
22	<scp>VEGFR2</scp> Trafficking, Signaling and Proteolysis is Regulated by the Ubiquitin Isopeptidase <scp>USP8</scp> . Traffic, 2016, 17, 53-65.	1.3	29
23	Receptor Tyrosine Kinase Inhibitors. , 2016, , 3940-3946.		6
24	The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis. Bioscience Reports, $2015,35,.$	1.1	50
25	Scavenger Receptor Structure and Function in Health and Disease. Cells, 2015, 4, 178-201.	1.8	267
26	Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease. Journal of Inherited Metabolic Disease, 2015, 38, 753-763.	1.7	44
27	Clinical and Preclinical Use of LOX-1-Specific Antibodies in Diagnostics and Therapeutics. Journal of Cardiovascular Translational Research, 2015, 8, 458-465.	1.1	12
28	VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration. Biology Open, 2015, 4, 731-742.	0.6	23
29	The Golgi apparatus is a functionally distinct Ca $<$ sup $>2+<$ sup $>$ store regulated by the PKA and Epac branches of the $\hat{l}^2 <$ sub $>1 <$ /sub $>$ -adrenergic signaling pathway. Science Signaling, 2015, 8, ra101.	1.6	32
30	Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells. Methods in Molecular Biology, 2015, 1332, 49-65.	0.4	4
31	Receptor tyrosine kinase structure and function in health and disease. AIMS Biophysics, 2015, 2, 476-502.	0.3	12
32	Identification of Receptor Tyrosine Kinase Inhibitors Using Cell Surface Biotinylation and Affinity Isolation. Methods in Molecular Biology, 2015, 1332, 121-131.	0.4	1
33	In Silico Design and Biological Evaluation of a Dual Specificity Kinase Inhibitor Targeting Cell Cycle Progression and Angiogenesis. PLoS ONE, 2014, 9, e110997.	1.1	12
34	Vascular Endothelial Growth Factor A-Stimulated Signaling from Endosomes in Primary Endothelial Cells. Methods in Enzymology, 2014, 535, 265-292.	0.4	17
35	Endosome-to-Plasma Membrane Recycling of VEGFR2 Receptor Tyrosine Kinase Regulates Endothelial Function and Blood Vessel Formation. Cells, 2014, 3, 363-385.	1.8	56
36	The role of lectin-like oxidised low-density lipoprotein receptor-1 in vascular pathology. Diabetes and Vascular Disease Research, 2014, 11, 410-418.	0.9	12

#	Article	lF	CITATIONS
37	VEGF-A isoforms differentially regulate ATF-2–dependent VCAM-1 gene expression and endothelial–leukocyte interactions. Molecular Biology of the Cell, 2014, 25, 2509-2521.	0.9	35
38	Restoring Akt1 Activity in Outgrowth Endothelial Cells From South Asian Men Rescues Vascular Reparative Potential. Stem Cells, 2014, 32, 2714-2723.	1.4	18
39	A Novel p53 Mutant Found in latrogenic Urothelial Cancers Is Dysfunctional and Can Be Rescued by a Second-site Global Suppressor Mutation*. Journal of Biological Chemistry, 2013, 288, 16704-16714.	1.6	13
40	Trafficking of the Menkes copper transporter ATP7A is regulated by clathrin-, AP-2â \in ", AP-1â \in ", and Rab22-dependent steps. Molecular Biology of the Cell, 2013, 24, 1735-1748.	0.9	55
41	A VE-cadherin–PAR3–α-catenin complex regulates the Golgi localization and activity of cytosolic phospholipase A ₂ α in endothelial cells. Molecular Biology of the Cell, 2012, 23, 1783-1796.	0.9	6
42	A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A. Experimental Cell Research, 2012, 318, 2297-2311.	1.2	6
43	A combinatorial <i>in silico</i> and cellular approach to identify a new class of compounds that target VEGFR2 receptor tyrosine kinase activity and angiogenesis. British Journal of Pharmacology, 2012, 166, 737-748.	2.7	31
44	The <scp>S</scp> 100A6 calciumâ€binding protein regulates endothelial cellâ€cycle progression and senescence. FEBS Journal, 2012, 279, 4576-4588.	2.2	40
45	Indolinones and anilinophthalazines differentially target VEGFâ€A―and basic fibroblast growth factorâ€mediated responses in primary human endothelial cells. British Journal of Pharmacology, 2012, 165, 245-259.	2.7	17
46	A Heat-Shock Protein Axis Regulates VEGFR2 Proteolysis, Blood Vessel Development and Repair. PLoS ONE, 2012, 7, e48539.	1.1	54
47	Hypoxia differentially regulates VEGFR1 and VEGFR2 levels and alters intracellular signaling and cell migration in endothelial cells. Biochemical and Biophysical Research Communications, 2011, 404, 774-779.	1.0	43
48	The VEGFR2 receptor tyrosine kinase undergoes constitutive endosome-to-plasma membrane recycling. Biochemical and Biophysical Research Communications, 2011, 410, 170-176.	1.0	61
49	Different sorts for different sprouts. Blood, 2011, 118, 490-491.	0.6	O
50	Evolution of the VEGF-Regulated Vascular Network from a Neural Guidance System. Molecular Neurobiology, 2011, 43, 192-206.	1.9	16
51	Ligandâ€Stimulated VEGFR2 Signaling is Regulated by Coâ€Ordinated Trafficking and Proteolysis. Traffic, 2010, 11, 161-174.	1.3	124
52	Scavenger Receptors and Their Potential as Therapeutic Targets in the Treatment of Cardiovascular Disease. International Journal of Hypertension, 2010, 2010, 1-21.	0.5	65
53	An integrative model for vascular endothelial growth factor A as a tumour biomarker. Integrative Biology (United Kingdom), 2010, 2, 397.	0.6	11
54	Rab GTPase Regulation of VEGFR2 Trafficking and Signaling in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1119-1124.	1,1	65

#	Article	IF	Citations
55	Activation of Cytosolic Phospholipase A2- $\hat{l}\pm$ as a Novel Mechanism Regulating Endothelial Cell Cycle Progression and Angiogenesis. Journal of Biological Chemistry, 2009, 284, 5784-5796.	1.6	33
56	Biomarkers in Peripheral Arterial Disease. Trends in Cardiovascular Medicine, 2009, 19, 147-151.	2.3	7
57	VEGFR1 receptor tyrosine kinase localization to the Golgi apparatus is calcium-dependent. Experimental Cell Research, 2009, 315, 877-889.	1.2	44
58	The LOX-1 scavenger receptor cytoplasmic domain contains a transplantable endocytic motif. Biochemical and Biophysical Research Communications, 2009, 383, 269-274.	1.0	9
59	VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis. Biochemical Society Transactions, 2009, 37, 1193-1197.	1.6	51
60	Deciphering soluble and membrane protein function using yeast systems (Review). Molecular Membrane Biology, 2009, 26, 127-135.	2.0	10
61	Oxidised LDL internalisation by the LOX-1 scavenger receptor is dependent on a novel cytoplasmic motif and is regulated by dynamin-2. Journal of Cell Science, 2008, 121, 2136-2147.	1.2	60
62	The lectin-like oxidized low-density-lipoprotein receptor: a pro-inflammatory factor in vascular disease. Biochemical Journal, 2008, 409, 349-355.	1.7	133
63	The Confluence-dependent Interaction of Cytosolic Phospholipase A2-α with Annexin A1 Regulates Endothelial Cell Prostaglandin E2 Generation. Journal of Biological Chemistry, 2007, 282, 34468-34478.	1.6	53
64	Functional refolding of a recombinant C-type lectin-like domain containing intramolecular disulfide bonds. Protein Expression and Purification, 2007, 52, 415-421.	0.6	12
65	African Swine Fever Virus Causes Microtubule-Dependent Dispersal of thetrans-Golgi Network and Slows Delivery of Membrane Protein to the PlasmaMembrane. Journal of Virology, 2006, 80, 11385-11392.	1.5	21
66	Cell Biology of Membrane Trafficking in Human Disease. International Review of Cytology, 2006, 252, 1-69.	6.2	47
67	LOX-1 scavenger receptor mediates calcium-dependent recognition of phosphatidylserine and apoptotic cells. Biochemical Journal, 2006, 393, 107-115.	1.7	77
68	Intrinsic Tyrosine Kinase Activity is Required for Vascular Endothelial Growth Factor Receptor 2 Ubiquitination, Sorting and Degradation in Endothelial Cells. Traffic, 2006, 7, 1270-1282.	1.3	165
69	Kir6.2 mutations causing neonatal diabetes prevent endocytosis of ATP-sensitive potassium channels. EMBO Journal, 2006, 25, 4142-4151.	3.5	49
70	Atherosclerosis and the Lectin-like OXidized Low-Density Lipoprotein Scavenger Receptor. Trends in Cardiovascular Medicine, 2006, 16, 60-64.	2.3	65
71	Cytosolic phospholipase A2-α and cyclooxygenase-2 localize to intracellular membranes of EA.hy.926 endothelial cells that are distinct from the endoplasmic reticulum and the Golgi apparatus. FEBS Journal, 2005, 272, 1278-1290.	2.2	29
72	Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis, 2005, 182, 1-15.	0.4	302

#	Article	IF	CITATIONS
73	Stimulation-dependent recruitment of cytosolic phospholipase A2-î± to EA.hy.926 endothelial cell membranes leads to calcium-independent association. FEBS Journal, 2004, 271, 69-77.	0.2	7
74	Endothelial cell confluence regulates Weibel-Palade body formation. Molecular Membrane Biology, 2004, 21, 413-421.	2.0	42
75	Actin and microtubule regulation of Trans-Golgi network architecture, and copper-dependent protein transport to the cell surface. Molecular Membrane Biology, 2004, 21, 59-66.	2.0	22
76	Aberrant trafficking of transmembrane proteins in human disease. Trends in Cell Biology, 2003, 13, 639-647.	3.6	40
77	Constitutive protein secretion from the trans -Golgi network to the plasma membrane (Review). Molecular Membrane Biology, 2003, 20, 129-139.	2.0	64
78	Foreword: Protein secretion and the Golgi apparatus. Molecular Membrane Biology, 2003, 20, 97-98.	2.0	4
79	Association of cPLA2- $\hat{l}\pm$ and COX-1 with the Golgi apparatus of A549 human lung epithelial cells. Journal of Cell Science, 2003, 116, 2303-2310.	1.2	34
80	The Menkes disease ATPase (ATP7A) is internalized via a Rac1-regulated, clathrin- and caveolae-independent pathway. Human Molecular Genetics, 2003, 12, 1523-1533.	1.4	40
81	Nuclear localisation of cytosolic phospholipase A2- $\hat{l}\pm$ in the EA.hy.926 human endothelial cell line is proliferation dependent and modulated by phosphorylation. Journal of Cell Science, 2002, 115, 4533-4543.	1.2	29
82	Novel membrane traffic steps regulate the exocytosis of the Menkes disease ATPase. Human Molecular Genetics, 2002, 11, 2855-2866.	1.4	47
83	The trans Golgi Network Is Lost from Cells Infected with African Swine Fever Virus. Journal of Virology, 2001, 75, 11755-11765.	1.5	24
84	Evidence for Prebudding Arrest of ER Export in Animal Cell Mitosis and its Role in Generating Golgi Partitioning Intermediates. Traffic, 2001, 2, 321-335.	1.3	51
85	CHARACTERIZATION AND REGULATION OF CONSTITUTIVE TRANSPORT INTERMEDIATES INVOLVED IN TRAFFICKING FROM THE TRANS -GOLGI NETWORK. Cell Biology International, 2001, 25, 705-713.	1.4	6
86	The Manganese Cation Disrupts Membrane Dynamics along the Secretory Pathway. Experimental Cell Research, 2000, 259, 167-179.	1.2	43
87	Antigen endocytosis and presentation mediated by human membrane $\lg G1$ in the absence of the $\lg \hat{l} \pm / \lg \hat{l}^2$ dimer. EMBO Journal, 1997, 16, 3842-3850.	3.5	41
88	Protein secretion: Sorting sweet sorting. Current Biology, 1996, 6, 1076-1078.	1.8	13
89	Chromosomal Location and Some Structural Features of Human Clathrin Light-Chain Genes (CLTA and) Tj ETQq1	1 0.78431 1.3	14 rgBT /Over 12
90	Clathrin light chains: arrays of protein motifs that regulate coated-vesicle dynamics. Trends in Biochemical Sciences, 1991, 16, 208-213.	3.7	87

#	Article	IF	CITATIONS
91	Studies with theEscherichia coligalactose operon regulatory region carrying a point mutation that simultaneously inactivates the two overlapping promoters Interactions with RNA polymerase and the cyclic AMP receptor protein. FEBS Letters, 1987, 219, 189-196.	1.3	23
92	RNA polymerase molecules initiating transcription at tandem promoters can collide and cause premature transcription termination. FEBS Letters, 1987, 212, 21-27.	1.3	15
93	Binding of Escherichia coli RNA polymerase to a promoter carrying mutations that stop transcription initiation. Journal of Molecular Biology, 1987, 195, 745-748.	2.0	13
94	Mutations that reduce expression from the P2 promoter of the Escherichia coli galactose operon. Gene, 1986, 41, 67-74.	1.0	69