
Gabriela Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/452722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene Oxide Thin Films with Drug Delivery Function. Nanomaterials, 2022, 12, 1149.	1.9	31
2	Graphene Biosensors—A Molecular Approach. Nanomaterials, 2022, 12, 1624.	1.9	12
3	Strategies to Improve the Targeting of Retinal Cells by Non-Viral Gene Therapy Vectors. Frontiers in Drug Delivery, 2022, 2, .	0.4	2
4	Development of strategies to modulate gene expression of angiogenesis-related molecules in the retina. Gene, 2021, 791, 145724.	1.0	2
5	Human-derived NLS enhance the gene transfer efficiency of chitosan. Bioscience Reports, 2021, 41, .	1.1	7
6	Polyphenol Metabolite Pyrogallol-O-Sulfate Decreases Microglial Activation and VEGF in Retinal Pigment Epithelium Cells and Diabetic Mouse Retina. International Journal of Molecular Sciences, 2021, 22, 11402.	1.8	3
7	Applicability and validation of the Reaction to Tests Scale (RTT) in a sample of Portuguese medical students. BMC Psychology, 2021, 9, 166.	0.9	1
8	Correlation between hyperglycemia and glycated albumin with retinopathy of prematurity. Scientific Reports, 2021, 11, 22321.	1.6	3
9	Dual-Acting Antiangiogenic Gene Therapy Reduces Inflammation and Regresses Neovascularization in Diabetic Mouse Retina. Molecular Therapy - Nucleic Acids, 2020, 22, 329-339.	2.3	6
10	PIGF silencing combined with PEDF overexpression: Modeling RPE secretionÂas potential therapy for retinalÂneovascularization. Molecular Biology Reports, 2020, 47, 4413-4425.	1.0	5
11	Dysregulation of trophic factors contributes to diabetic retinopathy in the Ins2Akita mouse. Experimental Eye Research, 2020, 194, 108027.	1.2	12
12	Polycaprolactone/Gelatin Nanofiber Membranes Containing EGCG-Loaded Liposomes and Their Potential Use for Skin Regeneration. ACS Applied Bio Materials, 2019, 2, 4790-4800.	2.3	40
13	Self-Assembled Multilayer Films for Time-Controlled Ocular Drug Delivery. ACS Applied Bio Materials, 2019, 2, 4173-4180.	2.3	8
14	The role of the retinal pigment epithelium and Müller cells secretome in neovascular retinal pathologies. Biochimie, 2018, 155, 104-108.	1.3	21
15	Molecular biology tools for the study and therapy of PDE6Î ² mutations. Journal of Biotechnology, 2018, 284, 1-5.	1.9	3
16	Insights on the intracellular trafficking of PDMAEMA gene therapy vectors. Materials Science and Engineering C, 2018, 93, 277-288.	3.8	8
17	Efficiency of RAFT-synthesized PDMAEMA in gene transfer to the retina. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 265-275.	1.3	18
18	Non-viral strategies for ocular gene delivery. Materials Science and Engineering C, 2017, 77, 1275-1289.	3.8	65

GABRIELA SILVA

#	Article	IF	CITATIONS
19	Aliskiren decreases oxidative stress and angiogenic markers in retinal pigment epithelium cells. Angiogenesis, 2017, 20, 175-181.	3.7	9
20	Aliskiren inhibits the renin-angiotensin system in retinal pigment epithelium cells. European Journal of Pharmaceutical Sciences, 2016, 92, 22-27.	1.9	3
21	pEPito-driven <i>PEDF</i> Expression Ameliorates Diabetic Retinopathy Hallmarks. Human Gene Therapy Methods, 2016, 27, 79-86.	2.1	22
22	Evaluation of cystamine-modified hyaluronic acid/chitosan polyplex as retinal gene vector. Materials Science and Engineering C, 2016, 58, 264-272.	3.8	21
23	Oxidative stress modulates the expression of VEGF isoforms in the diabetic retina. New Frontiers in Ophthalmology (London), 2016, 2, .	0.1	5
24	GLUT1 activity contributes to the impairment of PEDF secretion by the RPE. Molecular Vision, 2016, 22, 761-70.	1.1	17
25	Chitosan-Based Vectors Mediate Long-Term Gene Expression in the Retina. Journal of Bionanoscience, 2015, 9, 373-382.	0.4	4
26	Enhancement of chitosan-mediated gene delivery through combination with phiC31 integrase. Acta Biomaterialia, 2015, 17, 89-97.	4.1	13
27	Cationic Polyene Phospholipids as DNA Carriers for Ocular Gene Therapy. BioMed Research International, 2014, 2014, 1-13.	0.9	9
28	Combining Hyaluronic Acid with Chitosan Enhances Gene Delivery. Journal of Nanomaterials, 2014, 2014, 1-9.	1.5	21
29	Sustained Gene Expression in the Retina by Improved Episomal Vectors. Tissue Engineering - Part A, 2014, 20, 2692-2698.	1.6	18
30	Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study. Journal of Pharmacy and Bioallied Sciences, 2013, 5, 111.	0.2	21
31	Stem Cell and Tissue Engineering Therapies for Ocular Regeneration. Current Stem Cell Research and Therapy, 2011, 6, 255-272.	0.6	12
32	Natural Polymers in tissue engineering applications. , 2008, , 145-192.		29
33	Starch-Based Microparticles as Vehicles for the Delivery of Active Platelet-Derived Growth Factor. Tissue Engineering, 2007, 13, 1259-1268.	4.9	37
34	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	1.5	969
35	The effect of starch and starch-bioactive glass composite microparticles on the adhesion and expression of the osteoblastic phenotype of a bone cell line. Biomaterials, 2007, 28, 326-334.	5.7	45
36	Materials in particulate form for tissue engineering. 2. Applications in bone. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 97-109.	1.3	95

GABRIELA SILVA

#	Article	IF	CITATIONS
37	Materials in particulate form for tissue engineering. 1. Basic concepts. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 4-24.	1.3	93
38	Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 2007, 59, 207-233.	6.6	1,201
39	Starch-Based Microparticles as a Novel Strategy for Tissue Engineering Applications. Key Engineering Materials, 2006, 309-311, 907-910.	0.4	4
40	Entrapment ability and release profile of corticosteroids from starch-based microparticles. Journal of Biomedical Materials Research - Part A, 2005, 73A, 234-243.	2.1	33
41	Soluble starch and composite starch Bioactive Class 45S5 particles: Synthesis, bioactivity, and interaction with rat bone marrow cells. Materials Science and Engineering C, 2005, 25, 237-246.	3.8	24
42	Starch-Bioactive Glass Composite Microparticles: Bioactivity and Cellular Activity. Key Engineering Materials, 2005, 284-286, 761-764.	0.4	0
43	Microparticulate Release Systems Based on Natural Origin Materials. Advances in Experimental Medicine and Biology, 2004, 553, 283-300.	0.8	6
44	Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes. Journal of Materials Science: Materials in Medicine, 2004, 15, 1105-1112.	1.7	93
45	Cytotoxicity Screening of Biodegradable Polymeric Systems. , 2004, , .		2
46	Strategies for Delivering Bone and Cartilage Regenerating Factors. , 2004, , .		1
47	In vitro degradation and cytocompatibility evaluation of novel soy and sodium caseinate-based membrane biomaterials. Journal of Materials Science: Materials in Medicine, 2003, 14, 1055-1066.	1.7	78
48	Drug delivery therapies I. Current Opinion in Solid State and Materials Science, 2002, 6, 283-295.	5.6	48
49	Drug delivery therapies II Current Opinion in Solid State and Materials Science, 2002, 6, 297-312.	5.6	41