Sohrab Rahvar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4527197/publications.pdf

Version: 2024-02-01

156 papers

4,771 citations

32 h-index 55 g-index

163 all docs $\begin{array}{c} 163 \\ \text{docs citations} \end{array}$

163 times ranked 2403 citing authors

#	Article	IF	CITATIONS
1	FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005-2008. Astrophysical Journal, 2010, 720, 1073-1089.	4.5	296
2	Multifractal detrended fluctuation analysis of sunspot time series. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, P02003-P02003.	2.3	205
3	High-precision photometry by telescope defocusing - I. The transiting planetary system WASP-5. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1023-1031.	4.4	192
4	The MOG weak field approximation and observational test of galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1439-1451.	4.4	143
5	MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf. Astronomy and Astrophysics, 2011, 529, A102.	5.1	131
6	DISCOVERY AND MASS MEASUREMENTS OF A COLD, 10 EARTH MASS PLANET AND ITS HOST STAR. Astrophysical Journal, 2011, 741, 22.	4.5	117
7	PATHWAY TO THE GALACTIC DISTRIBUTION OF PLANETS: COMBINED < i>SPITZER < / i>AND GROUND-BASED MICROLENS PARALLAX MEASUREMENTS OF 21 SINGLE-LENS EVENTS. Astrophysical Journal, 2015, 804, 20.	4.5	104
8	The MOG weak field approximation – II. Observational test of Chandra X-ray clusters. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3724-3732.	4.4	102
9	PHYSICAL PROPERTIES OF THE 0.94-DAY PERIOD TRANSITING PLANETARY SYSTEM WASP-18. Astrophysical Journal, 2009, 707, 167-172.	4.5	98
10	SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK. Astrophysical Journal, 2016, 819, 93.	4.5	95
11	Physical properties, transmission and emission spectra of the WASP-19 planetary system from multi-colour photometryâ* Monthly Notices of the Royal Astronomical Society, 2013, 436, 2-18.	4.4	90
12	High-precision photometry by telescope defocussing - II. The transiting planetary system WASP-4. Monthly Notices of the Royal Astronomical Society, 2009, 399, 287-294.	4.4	88
13	Realisation of a fullyâ€deterministic microlensing observing strategy for inferring planet populations. Astronomische Nachrichten, 2010, 331, 671-691.	1.2	87
14	Campaign 9 of the <i>K2</i> Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey. Publications of the Astronomical Society of the Pacific, 2016, 128, 124401.	3.1	79
15	High-precision photometry by telescope defocussing – VI. WASP-24, WASP-25 and WASP-26☠Monthly Notices of the Royal Astronomical Society, 2014, 444, 776-789.	4.4	73
16	Transits and starspots in the WASP-6 planetary system. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1760-1769.	4.4	71
17	High-precision photometry by telescope defocusing – VII. The ultrashort period planet WASP-103â~ Monthly Notices of the Royal Astronomical Society, 2015, 447, 711-721.	4.4	66
18	High-precision photometry by telescope defocusing - III. The transiting planetary system WASP-2a~ Monthly Notices of the Royal Astronomical Society, 2010, 408, 1680-1688.	4.4	65

#	Article	IF	Citations
19	MOA 2010-BLG-477Lb: CONSTRAINING THE MASS OF A MICROLENSING PLANET FROM MICROLENSING PARALLAX, ORBITAL MOTION, AND DETECTION OF BLENDED LIGHT. Astrophysical Journal, 2012, 754, 73.	4.5	64
20	Orbital alignment and star-spot properties in the WASP-52 planetary system. Monthly Notices of the Royal Astronomical Society, 2017, 465, 843-857.	4.4	64
21	High-precision photometry by telescope defocusing - IV. Confirmation of the huge radius of WASP-17 b. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1338-1348.	4.4	61
22	A SUB-SATURN MASS PLANET, MOA-2009-BLG-319Lb. Astrophysical Journal, 2011, 728, 120.	4.5	58
23	The transiting system GJ1214: high-precision defocused transit observations and a search for evidence of transit timing variation. Astronomy and Astrophysics, 2013, 549, A10.	5.1	58
24	MICROLENSING DISCOVERY OF A POPULATION OF VERY TIGHT, VERY LOW MASS BINARY BROWN DWARFS. Astrophysical Journal, 2013, 768, 129.	4.5	57
25	f(R)gravity: From the Pioneer anomaly to cosmic acceleration. Physical Review D, 2008, 77, .	4.7	56
26	MOA-2010-BLG-073L: AN M-DWARF WITH A SUBSTELLAR COMPANION AT THE PLANET/BROWN DWARF BOUNDARY. Astrophysical Journal, 2013, 763, 67.	4.5	54
27	OGLE-2016-BLG-1190Lb: The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary. Astronomical Journal, 2018, 155, 40.	4.7	53
28	Modified gravity withf(R)=R2â^'R02. Physical Review D, 2007, 75, .	4.7	52
29	Observational tests of nonlocal gravity: Galaxy rotation curves and clusters of galaxies. Physical Review D, 2014, 89, .	4.7	46
30	MOA-2010-BLG-328Lb: A SUB-NEPTUNE ORBITING VERY LATE M DWARF?. Astrophysical Journal, 2013, 779, 91.	4.5	45
31	OGLE-2011-BLG-0265Lb: A JOVIAN MICROLENSING PLANET ORBITING AN M DWARF. Astrophysical Journal, 2015, 804, 33.	4.5	45
32	Gravitational microlensing I: A unique astrophysical tool. International Journal of Modern Physics D, 2015, 24, 1530020.	2.1	45
33	High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). Astronomy and Astrophysics, 2016, 589, A58.	5.1	45
34	High-precision photometry by telescope defocusing – V. WASP-15 and WASP-16â~ Monthly Notices of the Royal Astronomical Society, 2013, 434, 1300-1308.	4.4	44
35	Consistency off(R)=R2â^'R02gravity with cosmological observations in the Palatini formalism. Physical Review D, 2007, 76, .	4.7	42
36	A SUPER-JUPITER ORBITING A LATE-TYPE STAR: A REFINED ANALYSIS OF MICROLENSING EVENT OGLE-2012-BLG-0406. Astrophysical Journal, 2014, 782, 48.	4.5	42

#	Article	IF	Citations
37	High-precision photometry by telescope defocussing – VIII. WASP-22, WASP-41, WASP-42 and WASP-55. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4205-4217.	4.4	42
38	Physical properties and transmission spectrum of the WASP-80 planetary system from multi-colour photometry. Astronomy and Astrophysics, 2014, 562, A126.	5.1	40
39	MICROLENSING BINARIES WITH CANDIDATE BROWN DWARF COMPANIONS. Astrophysical Journal, 2012, 760, 116.	4.5	39
40	THE SPITZER MICROLENSING PROGRAM AS A PROBE FOR GLOBULAR CLUSTER PLANETS: ANALYSIS OF OGLE-2015-BLG-0448. Astrophysical Journal, 2016, 823, 63.	4.5	39
41	MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING. Astrophysical Journal, 2016, 825, 60.	4.5	39
42	Physical properties of the planetary systems WASP-45 and WASP-46 from simultaneous multiband photometry. Monthly Notices of the Royal Astronomical Society, 2016, 456, 990-1002.	4.4	37
43	OGLE-2009-BLG-092/MOA-2009-BLG-137: A DRAMATIC REPEATING EVENT WITH THE SECOND PERTURBATION PREDICTED BY REAL-TIME ANALYSIS. Astrophysical Journal, 2010, 723, 81-88.	4.5	36
44	The EROS2 search for microlensing events towards the spiral arms: the complete seven season results. Astronomy and Astrophysics, 2009, 500, 1027-1044.	5.1	32
45	Larger and faster: revised properties and a shorter orbital period for the WASP-57 planetary system from a pro-am collaboration. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3094-3107.	4.4	32
46	Photometric, astrometric and polarimetric observations of gravitational microlensing events. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2579-2586.	4.4	31
47	Illuminating hot Jupiters in caustic crossing. Monthly Notices of the Royal Astronomical Society, 2010, 407, 373-380.	4.4	30
48	A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251. Astronomy and Astrophysics, 2013, 552, A70.	5.1	30
49	Studying wave optics in the light curves of exoplanet microlensing. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1264-1274.	4.4	28
50	Transit timing variations in the WASP-4 planetary system. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4230-4236.	4.4	28
51	CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS. Astrophysical Journal, 2012, 751, 41.	4.5	27
52	Physical properties of the WASP-67 planetary system from multi-colour photometry. Astronomy and Astrophysics, 2014, 568, A127.	5.1	27
53	Polarimetric microlensing of circumstellar discs. Monthly Notices of the Royal Astronomical Society, 2015, 454, 4429-4439.	4.4	27
54	The advantages of using a Lucky Imaging camera for observations of microlensing events. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3248-3259.	4.4	27

#	Article	IF	Citations
55	Power-law parametrized quintessence model. Physical Review D, 2007, 75, .	4.7	26
56	GRAVITATIONAL MICROLENSING EVENTS AS A TARGET FOR THE SETI PROJECT. Astrophysical Journal, 2016, 828, 19.	4.5	26
57	Understanding EROS2 observations toward the spiral arms within a classical Galactic model framework. Astronomy and Astrophysics, 2017, 604, A124.	5.1	26
58	CHARACTERIZING LOW-MASS BINARIES FROM OBSERVATION OF LONG-TIMESCALE CAUSTIC-CROSSING GRAVITATIONAL MICROLENSING EVENTS. Astrophysical Journal, 2012, 755, 91.	4.5	25
59	Long-range correlation in cosmic microwave background radiation. Physical Review E, 2011, 84, 021103.	2.1	24
60	Faint-source-star planetary microlensing: the discovery of the cold gas-giant planet OGLE-2014-BLG-0676Lb. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2710-2717.	4.4	24
61	A detailed census of variable stars in the globular cluster NGC 6333 (M9) from CCD differential photometryã~ Monthly Notices of the Royal Astronomical Society, 2013, 434, 1220-1238.	4.4	23
62	OGLE-2015-BLG-0479LA,B: BINARY GRAVITATIONAL MICROLENS CHARACTERIZED BY SIMULTANEOUS GROUND-BASED AND SPACE-BASED OBSERVATIONS. Astrophysical Journal, 2016, 828, 53.	4.5	23
63	Gravitational microlensing in NUT space. Monthly Notices of the Royal Astronomical Society, 2003, 338, 926-930.	4.4	22
64	Characteristic angular scales in cosmic microwave background radiation. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, P11008-P11008.	2.3	22
65	Observational Constraints with Recent Data on the DGP Modified Gravity. International Journal of Theoretical Physics, 2009, 48, 1203-1230.	1.2	22
66	OGLE-2008-BLG-510: first automated real-time detection of a weak microlensing anomaly - brown dwarf or stellar binary?a~ Monthly Notices of the Royal Astronomical Society, 2012, 424, 902-918.	4.4	21
67	A census of variability in globular cluster M 68 (NGC 4590). Astronomy and Astrophysics, 2015, 578, A128.	5.1	21
68	Eclipsing negative-parity image of gravitational microlensing by a giant-lens star. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2875-2881.	4.4	21
69	THE FIRST SIMULTANEOUS MICROLENSING OBSERVATIONS BY TWO SPACE TELESCOPES: SPITZER AND SWIFT REVEAL A BROWN DWARF IN EVENT OGLE-2015-BLG-1319. Astrophysical Journal, 2016, 831, 183.	4.5	21
70	Propagation of electromagnetic waves in MOG: gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4514-4518.	4.4	21
71	MOG cosmology without dark matter and the cosmological constant. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3387-3399.	4.4	21
72	A NEW TYPE OF AMBIGUITY IN THE PLANET AND BINARY INTERPRETATIONS OF CENTRAL PERTURBATIONS OF HIGH-MAGNIFICATION GRAVITATIONAL MICROLENSING EVENTS. Astrophysical Journal, 2012, 756, 48.	4. 5	20

#	Article	IF	Citations
73	Applying MOG to Lensing: Einstein Rings, Abell 520 and the Bullet Cluster. Galaxies, 2018, 6, 43.	3.0	20
74	Spitzer Microlensing Parallax for OGLE-2017-BLG-0896 Reveals a Counter-rotating Low-mass Brown Dwarf. Astronomical Journal, 2019, 157, 106.	4.7	20
75	Observational constraints on a variable dark energy model. Physical Review D, 2006, 73, .	4.7	19
76	A much lower density for the transiting extrasolar planet WASP-7. Astronomy and Astrophysics, 2011, 527, A8.	5.1	19
77	SPITZER OBSERVATIONS OF OGLE-2015-BLG-1212 REVEAL A NEW PATH TOWARD BREAKING STRONG MICROLENS DEGENERACIES. Astrophysical Journal, 2016, 820, 79.	4.5	19
78	High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). Astronomy and Astrophysics, 2018, 610, A20.	5.1	19
79	Planetary microlensing signals from the orbital motion of the source star around the common barycentre. Monthly Notices of the Royal Astronomical Society, 2009, 392, 1193-1204.	4.4	18
80	Inverse problem: Reconstruction of the modified gravity action in the Palatini formalism by supernova type Ia data. Physical Review D, 2009, 80, .	4.7	18
81	Possibility of Magnetic Mass Detection by the Next Generation of Microlensing Experiments. Astrophysical Journal, 2004, 610, 673-678.	4.5	17
82	AN INVERSE f(R) GRAVITATION FOR COSMIC SPEED UP, AND DARK ENERGY EQUIVALENT. Modern Physics Letters A, 2008, 23, 1929-1937.	1.2	17
83	MOA-2010-BLG-311: A PLANETARY CANDIDATE BELOW THE THRESHOLD OF RELIABLE DETECTION. Astrophysical Journal, 2013, 769, 77.	4.5	17
84	Estimating the parameters of globular cluster M 30 (NGC 7099) from time-series photometry. Astronomy and Astrophysics, 2013, 555, A36.	5.1	17
85	Searching for variable stars in the cores of five metal-rich globular clusters using EMCCD observations. Astronomy and Astrophysics, 2015, 573, A103.	5.1	17
86	Structure formation in <i>f</i> (<i>R</i>) gravity: a distinguishing probe between the dark energy and modified gravity. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 008-008.	5.4	16
87	Compact object detection in self-lensing binary systems with a main-sequence star. Monthly Notices of the Royal Astronomical Society, 2011, 410, 912-918.	4.4	16
88	A brown dwarf orbiting an M-dwarf: MOAÂ2009–BLG–411L. Astronomy and Astrophysics, 2012, 547, A55.	5.1	16
89	EMCCD photometry reveals two new variable stars in the crowded central region of the globular cluster NGC 6981. Astronomy and Astrophysics, 2013, 553, A111.	5.1	16
90	Physical properties and transmission spectrum of the WASP-74 planetary system from multiband photometry. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5168-5179.	4.4	16

#	Article	IF	CITATIONS
91	Flux and color variations of the quadruply imaged quasar HE 0435-1223. Astronomy and Astrophysics, 2011, 528, A42.	5.1	15
92	SPHERICAL COLLAPSE IN MODIFIED NEWTONIAN DYNAMICS. Astrophysical Journal, 2009, 694, 1220-1227.	4.5	14
93	CONSISTENCY CONDITION OF SPHERICALLY SYMMETRIC SOLUTIONS IN f(R) GRAVITY. Modern Physics Letters A, 2009, 24, 305-309.	1.2	14
94	OGLEÂ2008–BLG–290: an accurate measurement of the limb darkening of a galactic bulge K Giant spatially resolved by microlensing. Astronomy and Astrophysics, 2010, 518, A51.	5.1	14
95	MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL. Astrophysical Journal, 2012, 746, 127.	4.5	14
96	MOA-2010-BLG-523: "FAILED PLANET―= RS CVn STAR. Astrophysical Journal, 2013, 763, 141.	4.5	14
97	Observational tests of a two parameter power-law class modified gravity in Palatini formalism. Physical Review D, 2009, 80, .	4.7	13
98	MiNDSTEp differential photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-17 microlensing and a new time delay. Astronomy and Astrophysics, 2017, 597, A49.	756; 5.1	12
99	The Excursion set approach: Stratonovich approximation and Cholesky decomposition. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5296-5300.	4.4	12
100	Detection of exoplanet as a binary source of microlensing events in WFIRST survey. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1581-1587.	4.4	12
101	Testing MOdified Gravity (MOG) theory and dark matter model in Milky Way using the local observables. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3502-3511.	4.4	12
102	Study of a strategy for parallax microlensing detection towards the Magellanic Clouds. Astronomy and Astrophysics, 2003, 412, 81-90.	5.1	12
103	RED NOISE VERSUS PLANETARY INTERPRETATIONS IN THE MICROLENSING EVENT OGLE-2013-BLG-446. Astrophysical Journal, 2015, 812, 136.	4.5	11
104	OGLE-2017-BLG-1186: first application of asteroseismology and Gaussian processes to microlensing. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3308-3323.	4.4	11
105	Imprints of Gravitational Millilensing on the Light Curve of Gamma-Ray Bursts. Astrophysical Journal, 2021, 922, 77.	4.5	11
106	Transient weak lensing by cosmological dark matter microhaloes. Physical Review D, 2014, 89, .	4.7	10
107	Rotation periods and astrometric motions of the Luhman 16AB brown dwarfs by high-resolution lucky-imaging monitoring. Astronomy and Astrophysics, 2015, 584, A104.	5.1	10
108	The Magellanic Stream in Modified Newtonian Dynamics. Astrophysical Journal, 2006, 652, 354-361.	4.5	9

#	Article	IF	CITATIONS
109	Searching for Galactic hidden gas through interstellar scintillation: results from a test with the NTT-SOFI detector. Astronomy and Astrophysics, 2011, 525, A108.	5.1	9
110	Constraint on the mass of fuzzy dark matter from the rotation curve of the MilkyÂWay. Physical Review D, 2020, 101, .	4.7	9
111	Statistical interpretation of Large Magellanic Cloud microlensing candidates. Monthly Notices of the Royal Astronomical Society, 2004, 347, 213-219.	4.4	8
112	A PARAMETRIZED VARIABLE DARK ENERGY MODEL: STRUCTURE FORMATION AND OBSERVATIONAL CONSTRAINTS. International Journal of Modern Physics D, 2006, 15, 1455-1472.	2.1	8
113	Large-scale changes of the cloud coverage in the $\ddot{l}\mu$ Indi Ba and Bb system. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3881-3899.	4.4	8
114	Possibility of primordial black holes as the source of gravitational wave events in the advanced LIGO detector. Physical Review D, 2021, 103, .	4.7	8
115	Two component baryonic–dark matter structure formation in top-hat model. New Astronomy, 2009, 14, 398-405.	1.8	7
116	Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System. International Journal of Theoretical Physics, 2010, 49, 1004-1017.	1.2	7
117	Exact enumeration approach to first-passage time distribution of non-Markov random walks. Physical Review E, 2019, 99, 062101.	2.1	7
118	OGLE-2014-BLG-1186: gravitational microlensing providing evidence for a planet orbiting the foreground star or for a close binary source?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5608-5632.	4.4	7
119	GENERAL RELATIVISTIC RELATION BETWEEN DENSITY CONTRAST AND PECULIAR VELOCITY. International Journal of Modern Physics D, 2002, 11, 321-336.	2.1	6
120	CHAOTIC INFLATION WITH TIME-VARIABLE SPACE DIMENSIONS. International Journal of Modern Physics D, 2002, 11, 511-526.	2.1	6
121	Microlensing by halo MACHOs with a spatially varying mass function. Monthly Notices of the Royal Astronomical Society, 2005, 356, 1127-1132.	4.4	6
122	Constraining galactic models through parallax and astrometry of microlensing events. Astronomy and Astrophysics, 2005, 438, 153-157.	5.1	6
123	Flux and color variations of the doubly imaged quasar UM673. Astronomy and Astrophysics, 2013, 551, A104.	5.1	6
124	Exploring the crowded central region of ten Galactic globular clusters using EMCCDs. Astronomy and Astrophysics, 2016, 588, A128.	5.1	6
125	OGLE-2017-BLG-0329L: A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations. Astrophysical Journal, 2018, 859, 82.	4.5	6
126	Evolution of Spiral Galaxies in Nonlocal Gravity. Astrophysical Journal, 2019, 872, 6.	4.5	6

#	Article	IF	Citations
127	The first observed stellar occultations by the irregular satellite Phoebe (Saturn IX) and improved rotational period. Monthly Notices of the Royal Astronomical Society, 2020, 492, 770-781.	4.4	6
128	Simulation of a strategy for the pixel lensing of M87 using theâ€, Hubble Space Telescope. Monthly Notices of the Royal Astronomical Society, 2012, 419, 124-131.	4.4	5
129	Simulation of optical interstellar scintillation. Astronomy and Astrophysics, 2013, 552, A93.	5.1	5
130	A template-free approach for waveform extraction of gravitational wave events. Scientific Reports, 2021, 11, 20507.	3.3	5
131	Magellanic Stream: A possible tool for studying dark halo model. New Astronomy, 2009, 14, 692-699.	1.8	4
132	Type I Shell Galaxies as a Test of Gravity Models. Astrophysical Journal, 2017, 848, 55.	4.5	4
133	Possibility of primordial black holes collision with Earth and the consequences of this collision. Monthly Notices of the Royal Astronomical Society, 2021, 507, 914-918.	4.4	4
134	Many new variable stars discovered in the core of the globular cluster NGC 6715 (M 54) with EMCCD observations. Astronomy and Astrophysics, 2016, 592, A120.	5.1	3
135	Cosmic initial conditions for a habitable universe. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3095-3102.	4.4	3
136	Gravitational grating. Monthly Notices of the Royal Astronomical Society, 2018, 479, 406-414.	4.4	3
137	Primordial black hole detection through diffractive microlensing. Physical Review D, 2018, 97, .	4.7	3
138	An analysis of binary microlensing event OGLE-2015-BLG-0060. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4603-4614.	4.4	3
139	Hamiltonian formalism for dynamics of particles in MOG. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4601-4605.	4.4	3
140	A search for transit timing variations in the HATS-18 planetary system. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3212-3223.	4.4	3
141	DENSITY CONTRAST-PECULIAR VELOCITY RELATION IN THE NEWTONIAN GAUGE. International Journal of Modern Physics D, 2003, 12, 79-88.	2.1	2
142	DYNAMICS OF INFLATIONARY COSMOLOGY IN TVSD MODEL. Modern Physics Letters A, 2005, 20, 2467-2485.	1.2	2
143	RESOLVING MICROLENSING EVENTS WITH TRIGGERED VLBI. Astrophysical Journal, 2016, 833, 169.	4.5	2
144	Close stellar encounters kicking planets out of habitable zone in various stellar environments. International Journal of Modern Physics D, 2021, 30, 2150063.	2.1	2

#	Article	IF	CITATIONS
145	Physical properties of near-Earth asteroid (2102) Tantalus from multi-wavelength observations. Monthly Notices of the Royal Astronomical Society, 0 , , .	4.4	2
146	EROS/MACHO GRAVITATIONAL MICROLENSING EVENTS TOWARD LMC IN EVANS HALO MODEL. International Journal of Modern Physics D, 2003, 12, 45-61.	2.1	1
147	Estimating the parameters of globular cluster M 30 (NGC 7099) from time-series photometry (i> (Corrigendum) (i>. Astronomy and Astrophysics, 2016, 588, C2.	5.1	1
148	Measuring limb darkening of stars in high-magnification microlensing events by the Finite Element Method. Monthly Notices of the Royal Astronomical Society, 2020, 494, 584-597.	4.4	1
149	Cross-matching of OGLE III and GAIA catalogues: Investigation of dark-lens microlensing candidates. International Journal of Modern Physics D, 2022, 31, .	2.1	1
150	Spatially Varying Mass Function of MACHOs in the Galactic Halo and Interpretation of Microlensing Results. Proceedings of the International Astronomical Union, 2004, 2004, 351-356.	0.0	0
151	Detection of IMBHs from microlensing in globular clusters. Proceedings of the International Astronomical Union, 2006, 2, 439-440.	0.0	0
152	Search for Turbulent Gas through Interstellar Scintillation. Proceedings of the International Astronomical Union, 2011, 7, 376-378.	0.0	0
153	Frequency-shift in the gravitational microlensing. Physical Review D, 2020, 101, .	4.7	0
154	Phase Transition in Modified Newtonian Dynamics (MONDian) Self-Gravitating Systems. Entropy, 2021, 23, 1158.	2.2	0
155	Measuring stellar atmosphere parameters using follow-up polarimetric microlensing observations. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3203-3214.	4.4	0
156	GALACTIC MACHO BUDGET: PROBLEMS AND POSSIBLE SOLUTION WITH THE ABUNDANT BROWN DWARFS. , 2005, , .		0