Jindåfch KopeÄek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4526911/publications.pdf

Version: 2024-02-01

243 papers

18,609 citations

69 h-index 125 g-index

248 all docs

248 docs citations

248 times ranked 15250 citing authors

#	Article	IF	CITATIONS
1	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
2	Hydrogel biomaterials: A smart future?. Biomaterials, 2007, 28, 5185-5192.	5.7	850
3	Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Advanced Drug Delivery Reviews, 2002, 54, 715-758.	6.6	754
4	Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature, 1999, 397, 417-420.	13.7	556
5	HPMA copolymers: Origins, early developments, present, and futureâ ⁻ †. Advanced Drug Delivery Reviews, 2010, 62, 122-149.	6.6	527
6	Protein-resistant surfaces prepared by PEO-containing block copolymer surfactants. Journal of Biomedical Materials Research Part B, 1989, 23, 351-368.	3.0	413
7	Hydrogels as smart biomaterials. Polymer International, 2007, 56, 1078-1098.	1.6	381
8	Hydrogels: From soft contact lenses and implants to selfâ€assembled nanomaterials. Journal of Polymer Science Part A, 2009, 47, 5929-5946.	2.5	336
9	Polymer–drug conjugates: Origins, progress to date and future directions. Advanced Drug Delivery Reviews, 2013, 65, 49-59.	6.6	321
10	Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Advanced Drug Delivery Reviews, 2005, 57, 609-636.	6.6	289
11	Smart Selfâ€Assembled Hybrid Hydrogel Biomaterials. Angewandte Chemie - International Edition, 2012, 51, 7396-7417.	7.2	276
12	Smart and genetically engineered biomaterials and drug delivery systems. European Journal of Pharmaceutical Sciences, 2003, 20, 1-16.	1.9	252
13	Title is missing!. Die Makromolekulare Chemie, 1983, 184, 2009-2020.	1.1	243
14	PEGylation of Poly(ethylene imine) Affects Stability of Complexes with Plasmid DNA under in Vivo Conditions in a Dose-Dependent Manner after Intravenous Injection into Mice. Bioconjugate Chemistry, 2005, 16, 785-792.	1.8	232
15	Surface properties of copolymers of alkyl methacrylates with, methoxy (polyethylene oxide) metilacrylates and their application as protein-resistant coatings. Biomaterials, 1990, 11, 455-464.	5.7	203
16	Aminolyses of monomeric and polymeric 4-nitrophenyl esters of N-methacryloylamino acids. Die Makromolekulare Chemie, 1977, 178, 2159-2168.	1.1	201
17	Peptide-directed self-assembly of hydrogels. Acta Biomaterialia, 2009, 5, 805-816.	4.1	201
18	Title is missing!. Die Makromolekulare Chemie, 1983, 184, 1997-2008.	1.1	179

#	Article	IF	CITATIONS
19	Bone-targeting macromolecular therapeutics. Advanced Drug Delivery Reviews, 2005, 57, 1049-1076.	6.6	178
20	Swell gels. Nature, 2002, 417, 389-391.	13.7	176
21	Efficacy of the chemotherapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma., 2000, 86, 108-117.		172
22	Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharmaceutical Research, 2002, 19, 396-402.	1.7	156
23	Controlled biodegradability of polymers â€" a key to drug delivery systems. Biomaterials, 1984, 5, 19-25.	5.7	152
24	Reversible Hydrogels from Self-Assembling Genetically Engineered Protein Block Copolymers. Biomacromolecules, 2005, 6, 1739-1749.	2.6	151
25	Refolding Hydrogels Self-Assembled fromN-(2-Hydroxypropyl)methacrylamide Graft Copolymers by Antiparallel Coiled-Coil Formation. Biomacromolecules, 2006, 7, 1187-1195.	2.6	145
26	Synthesis and Evaluation of Water-Soluble Polymeric Bone-Targeted Drug Delivery Systems. Bioconjugate Chemistry, 2003, 14, 853-859.	1.8	143
27	Pegylated Polyethylenimineâ^'Fab' Antibody Fragment Conjugates for Targeted Gene Delivery to Human Ovarian Carcinoma Cells. Bioconjugate Chemistry, 2003, 14, 989-996.	1.8	142
28	Title is missing!. Die Makromolekulare Chemie, 1981, 182, 799-809.	1.1	140
29	Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharmaceutical Research, 2002, 19, 140-146.	1.7	140
30	Enhancing Accumulation and Penetration of HPMA Copolymer–Doxorubicin Conjugates in 2D and 3D Prostate Cancer Cells via iRGD Conjugation with an MMP-2 Cleavable Spacer. Journal of the American Chemical Society, 2015, 137, 6726-6729.	6.6	140
31	Biodegradation of biomedical polymers. Progress in Polymer Science, 1983, 9, 1-58.	11.8	139
32	Novel pH-sensitive hydrogels with adjustable swelling kinetics. Biomaterials, 1998, 19, 1037-1047.	5.7	132
33	Tat-Conjugated Synthetic Macromolecules Facilitate Cytoplasmic Drug Delivery To Human Ovarian Carcinoma Cells. Bioconjugate Chemistry, 2003, 14, 44-50.	1.8	131
34	Targeting polymer therapeutics to bone. Advanced Drug Delivery Reviews, 2012, 64, 1189-1204.	6.6	128
35	Biodegradable Multiblock $Poly[\langle i \rangle N \langle l i \rangle - (2-hydroxypropyl)]$ methacrylamide] via Reversible Additiona 3 Fragmentation Chain Transfer Polymerization and Click Chemistry. Macromolecules, 2011, 44, 2481-2488.	2.2	127
36	The pharmacokinetics of polymer-bound adriamycin. Biochemical Pharmacology, 1990, 39, 1125-1131.	2.0	121

#	Article	IF	CITATIONS
37	Sequential combination therapy of ovarian cancer with degradable $\langle i \rangle N \langle i \rangle$ -(2-hydroxypropyl)methacrylamide copolymer paclitaxel and gemcitabine conjugates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12181-12186.	3.3	119
38	Cytoplasmic delivery and nuclear targeting of synthetic macromolecules. Journal of Controlled Release, 2003, 87, 89-105.	4.8	118
39	Polymerizable Fab′ antibody fragments for targeting of anticancer drugs. Nature Biotechnology, 1999, 17, 1101-1104.	9.4	116
40	Comparison of the anticancer effect of free and HPMA copolymer-bound adriamycin in human ovarian carcinoma cells. Pharmaceutical Research, 1999, 16, 986-996.	1.7	115
41	Hydrogels for site-specific drug delivery to the colon: in vitro and in vivo degradation. Pharmaceutical Research, 1992, 09, 1540-1545.	1.7	109
42	Antigen Responsive Hydrogels Based on Polymerizable Antibody Fab′ Fragment. Macromolecular Bioscience, 2003, 3, 296-300.	2.1	109
43	Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. 3. Evaluation of adriamycin conjugates against mouse leukaemia L1210 in vivo. Journal of Controlled Release, 1989, 10, 51-63.	4.8	107
44	Drugâ€Free Macromolecular Therapeutics: Induction of Apoptosis by Coiledâ€Coilâ€Mediated Crossâ€Linking of Antigens on the Cell Surface. Angewandte Chemie - International Edition, 2010, 49, 1451-1455.	7.2	105
45	Synthesis of biodegradable multiblock copolymers by click coupling of RAFT-generated heterotelechelic polyHPMA conjugates. Reactive and Functional Polymers, 2011, 71, 294-302.	2.0	105
46	Targeting Angiogenesis-Dependent Calcified Neoplasms Using Combined Polymer Therapeutics. PLoS ONE, 2009, 4, e5233.	1.1	105
47	Synthesis of Starlike N-(2-Hydroxypropyl)methacrylamide Copolymers:  Potential Drug Carriers. Biomacromolecules, 2000, 1, 313-319.	2.6	103
48	Targetable polymeric prodrugs. Journal of Controlled Release, 1987, 6, 315-327.	4.8	102
49	Associative diblock copolymers of poly(ethylene glycol) and coiled-coil peptides. Macromolecular Bioscience, 2002, 2, 199.	2.1	102
50	Smart Hydrogels Containing Adenylate Kinase: Translating Substrate Recognition into Macroscopic Motion. Journal of the American Chemical Society, 2008, 130, 15760-15761.	6.6	101
51	Degradation of side-chains of N-(2-hydroxypropyl)methacrylamide copolymers by lysosomal thiol-proteinases. Bioscience Reports, 1982, 2, 1041-1046.	1.1	100
52	Design of novel bioconjugates for targeted drug delivery. Journal of Controlled Release, 2002, 78, 165-173.	4.8	99
53	Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. Journal of Controlled Release, 2013, 166, 66-74.	4.8	99
54	In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials, 1997, 18, 861-872.	5.7	98

#	Article	IF	CITATIONS
55	Osteotropic Peptide That Differentiates Functional Domains of the Skeleton. Bioconjugate Chemistry, 2007, 18, 1375-1378.	1.8	98
56	Title is missing!. Die Makromolekulare Chemie, 1987, 188, 1261-1272.	1.1	96
57	Biodistribution and Pharmacokinetic Studies of Bone-Targeting <i>N</i> -(2-Hydroxypropyl)methacrylamide Copolymerâ Alendronate Conjugates. Molecular Pharmaceutics, 2008, 5, 548-558.	2.3	96
58	Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl) methacrylamide copolymers. Journal of Photochemistry and Photobiology B: Biology, 1996, 34, 203-210.	1.7	94
59	Chronic exposure to HPMA copolymer-bound adriamycin does not induce multidrug resistance in a human ovarian carcinoma cell line. Journal of Controlled Release, 1999, 59, 133-148.	4.8	93
60	Biological properties of targetable poly[N-(2-hydroxypropyl)-methacrylamide]-antibody conjugates. Journal of Controlled Release, 1985, 2, 289-310.	4.8	90
61	Backbone Degradable Multiblock <i>N</i> -(2-Hydroxypropyl)methacrylamide Copolymer Conjugates via Reversible Additionâ^'Fragmentation Chain Transfer Polymerization and Thiolâ^'ene Coupling Reaction. Biomacromolecules, 2011, 12, 247-252.	2.6	88
62	HPMA copolymer–anticancer drug–OV-TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. , 1998, 75, 600-608.		84
63	Pharmacokinetic and Biodistribution Studies of a Bone-Targeting Drug Delivery System Based onN-(2-Hydroxypropyl)methacrylamide Copolymers. Molecular Pharmaceutics, 2006, 3, 717-725.	2.3	84
64	Polymers containing enzymatically degradable bonds. VI.Hydrophilic gels cleavable by chymotrypsin. Biomaterials, 1982, 3, 150-154.	5.7	79
65	Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials, 2011, 32, 4450-4463.	5.7	79
66	Activity of N-(2-hydroxypropyl)methacrylamide copolymers containing daunomycin against a rat tumour model. Biochemical Pharmacology, 1989, 38, 875-879.	2.0	76
67	Biorecognizable HPMA copolymer–drug conjugates for colon-specific delivery of 9-aminocamptothecin. Journal of Controlled Release, 2001, 75, 365-379.	4.8	76
68	Hybrid Hydrogels Self-Assembled from HPMA Copolymers Containing Peptide Grafts. Macromolecular Bioscience, 2006, 6, 201-209.	2.1	74
69	Enhanced Biorecognition and Internalization of HPMA Copolymers Containing Multiple or Multivalent Carbohydrate Side-Chains by Human Hepatocarcinoma Cells. Bioconjugate Chemistry, 2001, 12, 890-899.	1.8	73
70	Biodistribution of free and N -(2-hydroxypropyl)methacrylamide copolymer-bound mesochlorin e 6 and adriamycin in nude mice bearing human ovarian carcinoma OVCAR-3 xenografts. Journal of Controlled Release, 1999, 61, 145-157.	4.8	71
71	Coiled-coil based drug-free macromolecular therapeutics: In vivo efficacy. Journal of Controlled Release, 2012, 157, 126-131.	4.8	71
72	Cell Surface Self-Assembly of Hybrid Nanoconjugates <i>via</i> Oligonucleotide Hybridization Induces Apoptosis. ACS Nano, 2014, 8, 719-730.	7.3	70

#	Article	IF	Citations
73	Biorecognition and Subcellular Trafficking of HPMA Copolymerâ^'Anti-PSMA Antibody Conjugates by Prostate Cancer Cells. Molecular Pharmaceutics, 2009, 6, 959-970.	2.3	68
74	Degradation of side chains of N-(2 hydroxypropyl) methacrylamide copolymers by lysosomal enzymes. Biochemical and Biophysical Research Communications, 1980, 94, 284-290.	1.0	66
75	Preliminary evaluation of caspases-dependent apoptosis signaling pathways of free and HPMA copolymer-bound doxorubicin in human ovarian carcinoma cells. Journal of Controlled Release, 2001, 71, 227-237.	4.8	66
76	Macromolecular therapeutics. Journal of Controlled Release, 2014, 190, 288-303.	4.8	66
77	Polymer nanomedicines. Advanced Drug Delivery Reviews, 2020, 156, 40-64.	6.6	66
78	Genetically Engineered Block Copolymers: Influence of the Length and Structure of the Coiled-Coil Blocks on Hydrogel Self-Assembly. Pharmaceutical Research, 2008, 25, 674-682.	1.7	65
79	Inhibition of Immunosuppressive Tumors by Polymerâ€Assisted Inductions of Immunogenic Cell Death and Multivalent PD‣1 Crosslinking. Advanced Functional Materials, 2020, 30, 1908961.	7.8	64
80	Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer. Journal of Controlled Release, 2006, 110, 323-331.	4.8	63
81	Biological rationale for the design of polymeric anti-cancer nanomedicines. Journal of Drug Targeting, 2013, 21, 1-26.	2.1	63
82	Title is missing!. Die Makromolekulare Chemie, 1981, 182, 1899-1915.	1.1	62
83	N-(2-hydroxypropyl) methacrylamide copolymers containing pendant saccharide moieties: Synthesis and bioadhesive properties. Journal of Polymer Science Part A, 1991, 29, 1895-1902.	2.5	62
84	Semitelechelic HPMA Copolymers Functionalized with Triphenylphosphonium as Drug Carriers for Membrane Transduction and Mitochondrial Localization. Biomacromolecules, 2006, 7, 2347-2356.	2.6	61
85	Selective inhibitory effect of HPMA copolymer-cyclopamine conjugate on prostate cancer stem cells. Biomaterials, 2012, 33, 1863-1872.	5.7	61
86	The light at the end of the tunnelâ€"second generation HPMA conjugates for cancer treatment. Current Opinion in Colloid and Interface Science, 2017, 31, 30-42.	3.4	60
87	The influence of cytotoxicity of macromolecules and of VEGF gene modulated vascular permeability on the enhanced permeability and retention effect in resistant solid tumors. Pharmaceutical Research, 2000, 17, 505-514.	1.7	59
88	Combination Chemotherapy and Photodynamic Therapy with Fab′ Fragment Targeted HPMA Copolymer Conjugates in Human Ovarian Carcinoma Cells. Molecular Pharmaceutics, 2008, 5, 696-709.	2.3	59
89	The Arthrotropism of Macromolecules in Adjuvant-Induced Arthritis Rat Model: A Preliminary Study. Pharmaceutical Research, 2004, 21, 1741-1749.	1.7	58
90	Hyaluronan Oligomers-HPMA Copolymer Conjugates for Targeting Paclitaxel to CD44-Overexpressing Ovarian Carcinoma. Pharmaceutical Research, 2012, 29, 1121-1133.	1.7	58

#	Article	lF	Citations
91	Lysosomal degradability of poly(?-amino acids). , 1997, 34, 381-392.		57
92	Endocytic uptake of a large array of HPMA copolymers: Elucidation into the dependence on the physicochemical characteristics. Journal of Controlled Release, 2010, 143, 71-79.	4.8	57
93	Polymers containing enzymatically degradable bonds, 4. Preliminary experiments in vivo. Die Makromolekulare Chemie, 1981, 182, 2941-2949.	1.1	56
94	Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials, 2006, 27, 1140-1151.	5.7	54
95	Synthesis of Longâ€Circulating, Backbone Degradable HPMA Copolymer–Doxorubicin Conjugates and Evaluation of Molecularâ€Weightâ€Dependent Antitumor Efficacy. Macromolecular Bioscience, 2013, 13, 155-160.	2.1	54
96	Degradation of proteins by guinea pig intestinal enzymes. International Journal of Pharmaceutics, 1993, 95, 171-179.	2.6	53
97	Enzymic activity of chymotrypsin and its poly(ethylene glycol) conjugates toward low and high molecular weight substrates. Bioconjugate Chemistry, 1993, 4, 290-295.	1.8	53
98	Novel HPMA Copolymer-Bound Constructs for Combined Tumor and Mitochondrial Targeting. Molecular Pharmaceutics, 2008, 5, 776-786.	2.3	53
99	FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. Journal of Controlled Release, 2015, 218, 36-44.	4.8	52
100	Hybrid hydrogels self-assembled from graft copolymers containing complementary \hat{l}^2 -sheets as hydroxyapatite nucleation scaffolds. Biomaterials, 2011, 32, 5341-5353.	5.7	51
101	Anti-CD20 multivalent HPMA copolymer-Fab′ conjugates for the direct induction of apoptosis. Biomaterials, 2012, 33, 7174-7181.	5.7	51
102	Design of smart HPMA copolymer-based nanomedicines. Journal of Controlled Release, 2016, 240, 9-23.	4.8	51
103	Title is missing!. Die Makromolekulare Chemie, 1981, 182, 1917-1928.	1.1	50
104	Poly(ethylene glycol)s containing enzymatically degradable bonds. Die Makromolekulare Chemie, 1986, 187, 1131-1144.	1.1	50
105	Enantioselective Release of 5-Fluorouracil from N-(2-Hydroxypropyl)methacrylamide-Based Copolymers via Lysosomal Enzymes. Bioconjugate Chemistry, 1995, 6, 483-492.	1.8	50
106	The coiled coils in the design of protein-based constructs: hybrid hydrogels and epitope displays. Journal of Controlled Release, 2001, 72, 57-70.	4.8	50
107	Poly[N -(2-hydroxypropyl)methacrylamide- block - n -butyl acrylate] micelles in water/DMF mixed solvents. Polymer, 2002, 43, 3735-3741.	1.8	50
108	HPMA copolymer-based combination therapy toxic to both prostate cancer stem/progenitor cells and differentiated cells induces durable anti-tumor effects. Journal of Controlled Release, 2013, 172, 946-953.	4.8	50

#	Article	IF	CITATIONS
109	Drug-free macromolecular therapeutics $\hat{a}\in \hat{a}$ a new paradigm in polymeric nanomedicines. Biomaterials Science, 2015, 3, 908-922.	2.6	50
110	Water-soluble HPMA copolymerâ€"prostaglandin E1conjugates containing a cathepsin K sensitive spacer. Journal of Drug Targeting, 2006, 14, 425-435.	2.1	49
111	Synthesis and Evaluation of Multivalent Branched HPMA Copolymerâ^'Fab′ Conjugates Targeted to the B-Cell Antigen CD20. Bioconjugate Chemistry, 2009, 20, 129-137.	1.8	49
112	pH-Sensitive Hydrogels. ACS Symposium Series, 1992, , 285-304.	0.5	48
113	Biodegradable multiblock poly(N-2-hydroxypropyl)methacrylamide gemcitabine and paclitaxel conjugates for ovarian cancer cell combination treatment. International Journal of Pharmaceutics, 2013, 454, 435-443.	2.6	48
114	Combination cytotoxicity of backbone degradable HPMA copolymer gemcitabine and platinum conjugates toward human ovarian carcinoma cells. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 187-196.	2.0	48
115	Dynamic Light Scattering Study of Self-Assembly of HPMA Hybrid Graft Copolymers. Biomacromolecules, 2008, 9, 510-517.	2.6	47
116	Synthesis of HPMA Copolymer Containing Adriamycin Bound via an Acid-Labile Spacer and its Activity toward Human Ovarian Carcinoma Cells. Journal of Bioactive and Compatible Polymers, 1999, 14, 447-456.	0.8	46
117	Soluble, crosslinked N-(2-hydroxypropyl)methacrylamide copolymers as potential drug carriers. Journal of Controlled Release, 1987, 4, 265-278.	4.8	45
118	Self-Assembling Hydrogels. Polymer Bulletin, 2007, 58, 53-63.	1.7	45
119	Bone-Targeted Acid-Sensitive Doxorubicin Conjugate Micelles as Potential Osteosarcoma Therapeutics. Bioconjugate Chemistry, 2014, 25, 2012-2020.	1.8	45
120	Responsive Hybrid Hydrogels with Volume Transitions Modulated by a Titin Immunoglobulin Module. Bioconjugate Chemistry, 2000, 11, 734-740.	1.8	44
121	The role of galactose, lactose, and galactose valency in the biorecognition of N-(2-hydroxypropyl)methacrylamide copolymers by human colon adenocarcinoma cells. Pharmaceutical Research, 2002, 19, 1114-1122.	1.7	44
122	Inhibition of Cathepsin K with Lysosomotropic Macromolecular Inhibitors. Biochemistry, 2002, 41, 8849-8859.	1.2	43
123	HPMA Copolymer-Bound Doxorubicin Induces Apoptosis in Ovarian Carcinoma Cells by the Disruption of Mitochondrial Function. Molecular Pharmaceutics, 2006, 3, 351-361.	2.3	43
124	Synthesis and Characterization of Enzymatically Degradable PEGâ€Based Peptideâ€Containing Hydrogels. Macromolecular Bioscience, 2010, 10, 445-454.	2.1	43
125	Effect of galactose on interaction of N-(2-hydroxypropyl) methacrylamide copolymers with hepatoma cells in culture: Preliminary application to an anticancer agent, daunomycin. Hepatology, 1989, 10, 207-214.	3.6	42
126	Binding and cytotoxicity of HPMA copolymer conjugates to lymphocytes mediated by receptor-binding epitopes. Pharmaceutical Research, 2003, 20, 360-367.	1.7	42

#	Article	IF	CITATIONS
127	Efficiency of high molecular weight backbone degradable HPMA copolymer–Prostaglandin E1 conjugate in promotion of bone formation in ovariectomized rats. Biomaterials, 2013, 34, 6528-6538.	5.7	41
128	A Two-Step Pretargeted Nanotherapy for CD20 Crosslinking May Achieve Superior Anti-Lymphoma Efficacy to Rituximab. Theranostics, 2015, 5, 834-846.	4.6	41
129	Amplification of CD20 Cross-Linking in Rituximab-Resistant B-Lymphoma Cells Enhances Apoptosis Induction by Drug-Free Macromolecular Therapeutics. ACS Nano, 2018, 12, 3658-3670.	7.3	40
130	Free and N-(2-hydroxypropyl)methacrylamide copolymer-bound geldanamycin derivative induce different stress responses in A2780 human ovarian carcinoma cells. Cancer Research, 2003, 63, 7876-82.	0.4	40
131	Title is missing!. Die Makromolekulare Chemie, 1978, 179, 329-336.	1.1	39
132	Biomaterials and Drug Delivery: Past, Present, and Future. Molecular Pharmaceutics, 2010, 7, 922-925.	2.3	39
133	In vitro bioadhesion of carbohydrate-containing N-(2-hydroxypropyl) methacrylamide copolymers to the GI tract of guinea pigs. International Journal of Pharmaceutics, 1992, 87, 105-116.	2.6	38
134	Hybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation. Journal of Controlled Release, 2015, 220, 608-616.	4.8	38
135	BIODEGRADATION OF POLYMERS FOR BIOMEDICAL USE. , 1982, , 305-320.		37
136	Soluble, crosslinked N-(2-hydroxypropyl)methacrylamide copolymers as potential drug carriers. Journal of Controlled Release, 1987, 4, 253-264.	4.8	37
137	Photoregulated association of N-(2-hydroxypropyl)methacrylamide copolymers with azobenzene-containing side chains. Macromolecules, 1992, 25, 5451-5456.	2.2	37
138	Biodegradable and pH sensitive hydrogels: synthesis by a polymer-polymer reaction. Macromolecular Chemistry and Physics, 1996, 197, 965-980.	1.1	37
139	Novel Aromatic Azo-Containing pH-Sensitive Hydrogels:  Synthesis and Characterization. Macromolecules, 2002, 35, 7791-7803.	2.2	37
140	Biological Activity of Anti-CD20 Multivalent HPMA Copolymer-Fab' Conjugates. Biomacromolecules, 2012, 13, 727-735.	2.6	37
141	Selfâ€Assembling Diblock Copolymers of Poly[<i>N</i> â€(2â€hydroxypropyl)methacrylamide] and a <i>^i^î²</i> â€6heet Peptide. Macromolecular Bioscience, 2009, 9, 36-44.	2.1	36
142	Intracellular Trafficking and Subcellular Distribution of a Large Array of HPMA Copolymers. Biomacromolecules, 2009, 10, 1704-1714.	2.6	36
143	Backbone Degradable <i>N</i> -(2-Hydroxypropyl)methacrylamide Copolymer Conjugates with Gemcitabine and Paclitaxel: Impact of Molecular Weight on Activity toward Human Ovarian Carcinoma Xenografts. Molecular Pharmaceutics, 2017, 14, 1384-1394.	2.3	36
144	Synthesis and Biological Evaluation of Disulfideâ€Linked HPMA Copolymerâ€Mesochlorin e ₆ Conjugates. Macromolecular Bioscience, 2008, 8, 375-383.	2.1	35

#	Article	IF	Citations
145	Biorecognition: A key to drug-free macromolecular therapeutics. Biomaterials, 2019, 190-191, 11-23.	5 . 7	35
146	Self-Assembled Hydrogels from Poly[N-(2-hydroxypropyl)methacrylamide] Grafted with \hat{l}^2 -Sheet Peptides. Biomacromolecules, 2009, 10, 2319-2327.	2.6	33
147	Synthesis and Characterization of Poly(εâ€ɛaprolactone)â€∢i>blockà€poly[⟨i>â€poly[⟨i>a€€2â€hydroxypropyl)methacrylamide] Micelles for Drug Delivery. Macromolecular Bioscience, 2011, 11, 1041-1051.	2.1	33
148	Drugâ€Free Macromolecular Therapeutics Induce Apoptosis via Calcium Influx and Mitochondrial Signaling Pathway. Macromolecular Bioscience, 2018, 18, 1700196.	2.1	33
149	Biodistribution and pharmacokinetics of colon-specific HPMA copolymer–9-aminocamptothecin conjugate in mice. Journal of Controlled Release, 2007, 117, 179-185.	4.8	32
150	Prolonged blood circulation in rats of nanospheres surface-modified with semitelechelic poly[N-(2-hydroxypropyl)methacrylamide]. Pharmaceutical Research, 1995, 12, 663-668.	1.7	31
151	Correlation of subcellular compartmentalization of HPMA copolymer-Mce6 conjugates with chemotherapeutic activity in human ovarian carcinoma cells. Pharmaceutical Research, 2003, 20, 728-737.	1.7	31
152	Identification of CD21-Binding Peptides with Phage Display and Investigation of Binding Properties of HPMA Copolymerâ^'Peptide Conjugates. Bioconjugate Chemistry, 2006, 17, 514-523.	1.8	31
153	Superâ€Resolution Imaging and Quantitative Analysis of Membrane Protein/Lipid Raft Clustering Mediated by Cellâ€Surface Selfâ€Assembly of Hybrid Nanoconjugates. ChemBioChem, 2015, 16, 1725-1729.	1.3	31
154	Degradability of hydrogels containing azoaromatic crosslinks. Macromolecular Chemistry and Physics, 1995, 196, 2183-2202.	1.1	30
155	Photoregulated Association of Water-Soluble Copolymers with Spirobenzopyran-Containing Side Chains. Macromolecules, 1997, 30, 5553-5556.	2.2	30
156	Chronic exposure of human ovarian carcinoma cells to free or HPMA copolymer-bound mesochlorin e6 does not induce P-glycoprotein-mediated multidrug resistance. Biomaterials, 2000, 21, 2203-2210.	5.7	30
157	Synthesis of Bioadhesive Lectin-HPMA Copolymerâ^'Cyclosporin Conjugates. Bioconjugate Chemistry, 2000, 11, 3-7.	1.8	30
158	Intracellularly biorecognizable derivatives of 5-fluorouracil. Biochemical Pharmacology, 1996, 52, 957-962.	2.0	29
159	Time- and concentration-dependent apoptosis and necrosis induced by free and HPMA copolymer-bound doxorubicin in human ovarian carcinoma cells. Journal of Controlled Release, 2000, 69, 185-196.	4.8	29
160	Antisense Oligonucleotides Delivered to the Lysosome Escape and Actively Inhibit the Hepatitis B Virus. Bioconjugate Chemistry, 2002, 13, 975-984.	1.8	29
161	Influence of the structure of drug moieties on the in vitro efficacy of HPMA copolymer-geldanamycin derivative conjugates. Pharmaceutical Research, 2002, 19, 115-123.	1.7	29
162	Title is missing!. Die Makromolekulare Chemie, 1987, 188, 2497-2509.	1.1	27

#	Article	IF	CITATIONS
163	De novo design of biomedical polymers: hybrids from synthetic macromolecules and genetically engineered protein domains. Macromolecular Symposia, 2001, 174, 31-42.	0.4	27
164	Two-Step Fluorescence Screening of CD21-Binding Peptides with One-Bead One-Compound Library and Investigation of Binding Properties of N-(2-Hydroxypropyl) methacrylamide Copolymerâ^'Peptide Conjugates. Biomacromolecules, 2006, 7, 3037-3046.	2.6	27
165	Multimodality Imaging of Coiledâ€Coil Mediated Selfâ€Assembly in a "Drugâ€Free―Therapeutic System. Advanced Healthcare Materials, 2015, 4, 1054-1065.	3.9	27
166	Multivalent HER2-binding polymer conjugates facilitate rapid endocytosis and enhance intracellular drug delivery. Journal of Controlled Release, 2020, 319, 285-299.	4.8	27
167	Biorecognition of HPMA copolymer-adriamycin conjugates by lymphocytes mediated by synthetic receptor binding epitopes. Pharmaceutical Research, 1999, 16, 1010-1019.	1.7	26
168	Improved synthesis and evaluation of 17 -substituted aminoalkylgeldanamycin derivatives applicable to drug delivery systems. Bioorganic and Medicinal Chemistry Letters, 2001, 11 , 2089-2091.	1.0	26
169	Self-association properties of HPMA copolymers containing an amphipathic heptapeptide. Journal of Drug Targeting, 2007, 15, 465-474.	2.1	26
170	Combination therapy of prostate cancer with HPMA copolymer conjugates containing PI3K/mTOR inhibitor and docetaxel. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 107-115.	2.0	26
171	Targetable Polymeric Anticancer Drugs Annals of the New York Academy of Sciences, 1991, 618, 335-344.	1.8	25
172	A new construct of antibody-drug conjugates for treatment of B-cell non-Hodgkin's lymphomas. European Journal of Pharmaceutical Sciences, 2017, 103, 36-46.	1.9	25
173	Title is missing!. Die Makromolekulare Chemie, 1984, 185, 231-237.	1.1	24
174	Methods of targeting N-(2-hydroxypropyl) methacrylamide copolymers to particular cell types. Die Makromolekulare Chemie, 1985, 9, 3-12.	1.1	24
175	Targetable photoactivalable drugs. 3. In vitro efficacy of polymer bound chlorin e6 toward human hepatocarcinoma cell line (PLC/PRF/5) targeted with galactosamine and to mouse splenocytes targeted with anti-Thy 1.2 antibodies. Journal of Controlled Release, 1993, 25, 71-87.	4.8	24
176	Broadening and Enhancing Functions of Antibodies by Self-Assembling Multimerization at Cell Surface. ACS Nano, 2019, 13, 11422-11432.	7.3	24
177	Water Soluble Polymers for Medicine. British Polymer Journal, 1978, 10, 111-114.	0.7	23
178	HPMA Copolymer-Bound Doxorubicin Induces Apoptosis in Human Ovarian Carcinoma Cells by a Fas-Independent Pathway. Molecular Pharmaceutics, 2004, 1, 174-182.	2.3	23
179	Release of Prostaglandin E ₁ from <i>N</i> ≥â€(2â€Hydroxypropyl)methacrylamide Copolymer Conjugates by Bone Cells. Macromolecular Bioscience, 2008, 8, 599-605.	2.1	23
180	Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer. Journal of Drug Targeting, 2013, 21, 968-980.	2.1	23

#	Article	IF	Citations
181	Biodistribution of Fracture-Targeted GSK3 \hat{I}^2 Inhibitor-Loaded Micelles for Improved Fracture Healing. Biomacromolecules, 2015, 16, 3145-3153.	2.6	23
182	Stability in Plasmas of Various Species of HPMA Copolymer–PGE1 Conjugates. Pharmaceutical Research, 2007, 24, 2270-2280.	1.7	22
183	Novel Synthesis of HPMA Copolymers Containing Peptide Grafts and Their Selfâ€Assembly Into Hybrid Hydrogels. Macromolecular Chemistry and Physics, 2008, 209, 467-475.	1.1	22
184	Drug-free macromolecular therapeutics induce apoptosis of patient chronic lymphocytic leukemia cells. Drug Delivery and Translational Research, 2014, 4, 389-394.	3.0	22
185	Mechanisms of Cytotoxicity in Human Ovarian Carcinoma Cells Exposed to Free Mce6 or HPMA Copolymer–Mce6 Conjugates¶. Photochemistry and Photobiology, 2003, 77, 645.	1.3	21
186	Immunogenicity of coiled-coil based drug-free macromolecular therapeutics. Biomaterials, 2014, 35, 5886-5896.	5.7	21
187	Enzymatic Degradation of Poly(ethylene glycol) Modified Dextrans. Journal of Bioactive and Compatible Polymers, 1994, 9, 388-410.	0.8	19
188	Biorecognition of sugar containing N-(2-hydroxypropyl)methacrylamide copolymers by immobilized lectin. Macromolecular Chemistry and Physics, 1997, 198, 1165-1180.	1.1	19
189	The cytoplasmic escape and nuclear accumulation of endocytosed and microinjected HPMA copolymers and a basic kinetic study in hep G2 cells. AAPS PharmSci, 2001, 3, 62-75.	1.3	19
190	Drug-free macromolecular therapeutics: Impact of structure on induction of apoptosis in Raji B cells. Journal of Controlled Release, 2017, 263, 139-150.	4.8	19
191	Lectin-HPMA copolymer conjugates: potential oral drug carriers for targeting diseased tissues. Macromolecular Chemistry and Physics, 1998, 199, 2601-2608.	1.1	18
192	The Influence of Fusion Sequences on the Thermal Stabilities of Coiled-Coil Proteins. Macromolecular Bioscience, 2002, 2, 395-401.	2.1	18
193	Polymeric biomaterials and nanomedicines. Journal of Drug Delivery Science and Technology, 2015, 30, 318-330.	1.4	17
194	Drug-free albumin-triggered sensitization of cancer cells to anticancer drugs. Journal of Controlled Release, 2019, 293, 84-93.	4.8	17
195	Title is missing!. Die Makromolekulare Chemie, 1983, 184, 1339-1344.	1.1	16
196	Preparation of polymer-modified enzymes of prolonged circulation times. Poly[N-(2-hydroxypropyl) methacrylamide]-bound acetylcholinesterase. Die Makromolekulare Chemie, 1985, 9, 35-42.	1.1	16
197	Pharmacokinetic Modeling of Absorption Behavior of 9-Aminocamptothecin (9-AC) Released from Colon-specific HPMA Copolymer–9-AC Conjugate in Rats. Pharmaceutical Research, 2008, 25, 218-226.	1.7	16
198	Coiled-Coil Hydrogels: Effect of Grafted Copolymer Composition and Cyclization on Gelation. Macromolecules, 2009, 42, 2265-2274.	2.2	16

#	Article	IF	CITATIONS
199	HPMA Copolymer CXCR4 Antagonist Conjugates Substantially Inhibited the Migration of Prostate Cancer Cells. ACS Macro Letters, 2014, 3, 1240-1243.	2.3	16
200	Human Serum Albuminâ€Based Drugâ€Free Macromolecular Therapeutics: Apoptosis Induction by Coiledâ€Coilâ€Mediated Crossâ€Linking of CD20 Antigens on Lymphoma B Cell Surface. Macromolecular Bioscience, 2018, 18, e1800224.	2.1	16
201	N-(2-Hydroxypropyl)methacrylamide Copolymer-9-Aminocamptothecin Conjugate: Colon-Specific Drug Delivery in Rats. Journal of Bioactive and Compatible Polymers, 2002, 17, 305-319.	0.8	15
202	Swelling Pressure Induced Phase-Volume Transition in Hybrid Biopolymer Gels Caused by Unfolding of Folded Crosslinks:Â A Model. Biomacromolecules, 2003, 4, 1818-1826.	2.6	15
203	Targeting of Multidrugâ€Resistant Human Ovarian Carcinoma Cells With Antiâ€Pâ€Glycoprotein Antibody Conjugates. Macromolecular Bioscience, 2012, 12, 502-514.	2.1	15
204	FRET Imaging of Enzymeâ€Responsive HPMA Copolymer Conjugate. Macromolecular Bioscience, 2017, 17, 1600125.	2.1	15
205	Synthesis and Photoproperties of a Substituted Zinc(II) Phthalocyanine-N-(2-hydroxypropyl)methacrylamide Copolymer Conjugate. Collection of Czechoslovak Chemical Communications, 1993, 58, 2321-2336.	1.0	15
206	Osmotic opening of the blood-brain barrier permeability to N-(2-hydroxypropyl)methacrylamide copolymers. Effect of polymer -Mw charge and hydrophobicity. Journal of Controlled Release, 1989, 10, 27-35.	4.8	14
207	Degradation and aggregation of human calcitonin in vitro. Pharmaceutical Research, 1999, 16, 359-367.	1.7	14
208	Stimuli-Responsive Properties of Peptide-Based Copolymers Studied via Directional Growth of Self-Assembled Patterns on Solid Substrate. Biomacromolecules, 2009, 10, 1955-1961.	2.6	14
209	Drug-free macromolecular therapeutics induce apoptosis in cells isolated from patients with B cell malignancies with enhanced apoptosis induction by pretreatment with gemcitabine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 217-225.	1.7	14
210	Biorecognizable Polymers: Design, Structure, and Bioactivity. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 2103-2117.	1.2	13
211	Mechanisms of anticancer action of HPMA copolymer-bound doxorubicin. Macromolecular Symposia, 2001, 172, 35-48.	0.4	13
212	Antitumor Efficacy of Colonâ€Specific HPMA Copolymer/9â€Aminocamptothecin Conjugates in Mice Bearing Humanâ€Colon Carcinoma Xenografts. Macromolecular Bioscience, 2009, 9, 1135-1142.	2.1	13
213	Synthesis and activity of tumor-homing peptide iRGD and histone deacetylase inhibitor valproic acid conjugate. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1928-1933.	1.0	13
214	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1982, 3, 11-15.	1.1	12
215	Title is missing!. Die Makromolekulare Chemie, 1989, 190, 69-82.	1.1	12
216	Association of a Substituted Zinc(II) Phthalocyanine-N- (2-Hydroxypropyl)methacrylamide Copolymer Conjugate. Macromolecules, 1995, 28, 8375-8380.	2.2	12

#	Article	IF	CITATIONS
217	Presentation of Epitopes on Genetically Engineered Peptides and Selection of Lymphoma-Targeting Moieties Based on Epitope Biorecognition. Biomacromolecules, 2002, 3, 421-431.	2.6	12
218	<i>N</i> â€{2â€Hydroxypropyl)methacrylamide Copolymer–Drug Conjugates for Combination Chemotherapy of Acute Myeloid Leukemia. Macromolecular Bioscience, 2016, 16, 121-128.	2.1	12
219	Indium-based and iodine-based labeling of HPMA copolymer–epirubicin conjugates: Impact of structure on the in vivo fate. Journal of Controlled Release, 2016, 235, 306-318.	4.8	12
220	Targeting of soluble cross-linked N-(2-hydroxypropyl)methacrylamide copolymers in vivo. A potential drug delivery system. Biochemical Society Transactions, 1984, 12, 1064-1065.	1.6	11
221	Prostateâ€Cancerâ€Targeted <i>Nâ€</i> (2â€Hydroxypropyl)methacrylamide Copolymer/Docetaxel Conjugates. Macromolecular Bioscience, 2012, 12, 412-422.	2.1	11
222	Healing efficacy of fracture-targeted GSK3 \hat{l}^2 inhibitor-loaded micelles for improved fracture repair. Nanomedicine, 2017, 12, 185-193.	1.7	11
223	Title is missing!. Die Makromolekulare Chemie, 1983, 184, 1345-1353.	1.1	10
224	Drug targeting to lysosomes. Biochemical Society Transactions, 1984, 12, 913-915.	1.6	10
225	Title is missing!. Die Makromolekulare Chemie, 1992, 193, 2605-2619.	1.1	10
226	Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM. Journal of Controlled Release, 2016, 231, 50-59.	4.8	10
227	Dendronized polymer conjugates with amplified immunogenic cell death for oncolytic immunotherapy. Journal of Controlled Release, 2021, 329, 1129-1138.	4.8	10
228	Multifunctional Water-Soluble Polymers for Drug Delivery. Fundamental Biomedical Technologies, 2008, , 81-142.	0.2	9
229	Crosslinking of CD38 Receptors Triggers Apoptosis of Malignant B Cells. Molecules, 2021, 26, 4658.	1.7	9
230	Nanomedicines in B cell-targeting therapies. Acta Biomaterialia, 2022, 137, 1-19.	4.1	9
231	A model for swelling changes in a covalently crosslinked gel caused by unfolding of folded domains. Polymer Bulletin, 2001, 47, 351-358.	1.7	8
232	Combination treatment with immunogenic and anti-PD-L1 polymer-drug conjugates of advanced tumors in a transgenic MMTV-PyMT mouse model of breast cancer. Journal of Controlled Release, 2021, 332, 652-659.	4.8	7
233	Photoassociation of water-soluble copolymers containing photochromic spirobenzopyran moieties. Polymers for Advanced Technologies, 1998, 9, 641-648.	1.6	6
234	Drug-free macromolecular therapeutics exhibit amplified apoptosis in G2/M phase arrested cells. Journal of Drug Targeting, 2019, 27, 566-572.	2.1	6

#	Article	IF	CITATIONS
235	Otto Wichterle (1913-98). Nature, 1998, 395, 332-332.	13.7	5
236	Exploration and Evaluation of Therapeutic Efficacy of Drugâ€Free Macromolecular Therapeutics in Collagenâ€Induced Rheumatoid Arthritis Mouse Model. Macromolecular Bioscience, 2020, 20, 1900445.	2.1	5
237	Smart Polymer-Based Nanomedicines. , 2016, , 373-413.		4
238	HPMA copolymer-modified avidin: Immune response. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 1-12.	1.9	3
239	Adsorption and activation of zymogens at solid-liquid interfaces. I. Chymotrypsinogen on alkylamino modified silica derivates. Journal of Biomedical Materials Research Part B, 1994, 28, 247-257.	3.0	2
240	Cancer Stem Cells: Potential Target For Anti-Cancer Nanomedicines. ACS Symposium Series, 2013, , 127-149.	0.5	2
241	Interview with Professor JindÅ™ich KopeÄek. Nanomedicine, 2014, 9, 577-579.	1.7	0
242	Polymeric Drugs., 2014,, 1-9.		0
243	Design and synthesis of FRET-trackable HPMA-based biodegradable conjugates for drug/gene delivery. Journal of Controlled Release, 2015, 213, e58.	4.8	O