Chi-Chuan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4526741/publications.pdf Version: 2024-02-01

		26630	38395
341	12,917	56	95
papers	citations	h-index	g-index
341 all docs	341 docs citations	341 times ranked	6048 citing authors

CHI-CHIIAN WANC

#	Article	IF	CITATIONS
1	Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 2004, 29, 1207-1217.	8.8	645
2	Enhancement of thermal conductivity with carbon nanotube for nanofluids. International Communications in Heat and Mass Transfer, 2005, 32, 1202-1210.	5.6	537
3	Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. International Journal of Heat and Mass Transfer, 2006, 49, 3028-3033.	4.8	369
4	A generalized heat transfer correlation for louver fin geometry. International Journal of Heat and Mass Transfer, 1997, 40, 533-544.	4.8	358
5	Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: Correlation. International Journal of Heat and Mass Transfer, 2000, 43, 2693-2700.	4.8	309
6	Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data. International Journal of Heat and Mass Transfer, 2000, 43, 2681-2691.	4.8	207
7	Heat transfer and friction correlation for compact louvered fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 1999, 42, 1945-1956.	4.8	205
8	Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers. Experimental Thermal and Fluid Science, 1997, 14, 174-186.	2.7	188
9	Sensible heat and friction characteristics of plate fin-and-tube heat exchangers having plane fins. International Journal of Refrigeration, 1996, 19, 223-230.	3.4	177
10	Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Research Letters, 2011, 6, 297.	5.7	173
11	Two-phase pressure drop of air–water and R-410A in small horizontal tubes. International Journal of Multiphase Flow, 2001, 27, 1293-1299.	3.4	156
12	Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Experimental Thermal and Fluid Science, 1997, 15, 395-405.	2.7	155
13	Review of defrosting methods. Renewable and Sustainable Energy Reviews, 2017, 73, 53-74.	16.4	151
14	Role of hybrid-nanofluid in heat transfer enhancement – A review. International Communications in Heat and Mass Transfer, 2021, 125, 105341.	5.6	140
15	Performance of Plate Finned Tube Heat Exchangers Under Dehumidifying Conditions. Journal of Heat Transfer, 1997, 119, 109-117.	2.1	137
16	A novel design of pulsating heat pipe with fewer turns applicable to all orientations. International Journal of Heat and Mass Transfer, 2012, 55, 5722-5728.	4.8	130
17	A generalized friction correlation for louver fin geometry. International Journal of Heat and Mass Transfer, 2000, 43, 2237-2243.	4.8	121
18	A comparative study of compact enhanced fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 2001, 44, 3565-3573.	4.8	115

#	Article	IF	CITATIONS
19	Data reduction for air-side performance of fin-and-tube heat exchangers. Experimental Thermal and Fluid Science, 2000, 21, 218-226.	2.7	113
20	Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm. Building and Environment, 2019, 155, 105-117.	6.9	112
21	Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers. International Journal of Refrigeration, 2002, 25, 673-680.	3.4	110
22	Analysis of a 50kW organic Rankine cycle system. Energy, 2011, 36, 5877-5885.	8.8	110
23	Heat and mass transfer for plate fin-and-tube heat exchangers, with and without hydrophilic coating. International Journal of Heat and Mass Transfer, 1998, 41, 3109-3120.	4.8	107
24	Enhanced cooling for LED lighting using ionic wind. International Journal of Heat and Mass Transfer, 2013, 57, 285-291.	4.8	101
25	Flow visualization of annular and delta winlet vortex generators in fin-and-tube heat exchanger application. International Journal of Heat and Mass Transfer, 2002, 45, 3803-3815.	4.8	98
26	Parametric study on thermal performance of microchannel heat sinks with internal vertical Y-shaped bifurcations. International Journal of Heat and Mass Transfer, 2015, 90, 948-958.	4.8	98
27	A review of current status of free cooling in datacenters. Applied Thermal Engineering, 2017, 114, 1224-1239.	6.0	98
28	An investigation of the airside performance of the slit fin-and-tube heat exchangers. International Journal of Refrigeration, 1999, 22, 595-603.	3.4	96
29	Spatial Control of Heterogeneous Nucleation on the Superhydrophobic Nanowire Array. Advanced Functional Materials, 2014, 24, 1211-1217.	14.9	95
30	Orientation effect on natural convective performance of square pin fin heat sinks. International Journal of Heat and Mass Transfer, 2008, 51, 2368-2376.	4.8	92
31	Technical Note A heat transfer and friction correlation for wavy fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 1999, 42, 1919-1924.	4.8	89
32	A numerical investigation of louvered fin-and-tube heat exchangers having circular and oval tube configurations. International Journal of Heat and Mass Transfer, 2001, 44, 4235-4243.	4.8	89
33	Heat transfer enhancement in fin-and-tube heat exchangers – A review on different mechanisms. Renewable and Sustainable Energy Reviews, 2021, 137, 110470.	16.4	89
34	Characteristics of flow distribution in compact parallel flow heat exchangers, part I: Typical inlet header. Applied Thermal Engineering, 2011, 31, 3226-3234.	6.0	85
35	A review on airflow management in data centers. Applied Energy, 2019, 240, 84-119.	10.1	85
36	Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement. International Journal of Heat and Mass Transfer, 2009, 52, 2565-2570.	4.8	83

3

#	Article	IF	CITATIONS
37	Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters. Experimental Thermal and Fluid Science, 2014, 54, 85-92.	2.7	79
38	Simultaneous heat and mass transfer characteristics for wavy fin-and-tube heat exchangers under dehumidifying conditions. International Journal of Heat and Mass Transfer, 2006, 49, 132-143.	4.8	77
39	An airside correlation for plain fin-and-tube heat exchangers in wet conditions. International Journal of Heat and Mass Transfer, 2000, 43, 1869-1872.	4.8	75
40	Heat and momentum transfer for compact louvered fin-and-tube heat exchangers in wet conditions. International Journal of Heat and Mass Transfer, 2000, 43, 3443-3452.	4.8	75
41	Air Side Performance of Brazed Aluminum Heat Exchangers. Journal of Enhanced Heat Transfer, 1996, 3, 15-28.	1.1	74
42	Review on CO2 heat pump water heater for residential use in Japan. Renewable and Sustainable Energy Reviews, 2015, 50, 1383-1391.	16.4	73
43	Comprehensive Study of Convex-Louver and Wavy Fin-and-Tube Heat Exchangers. Journal of Thermophysics and Heat Transfer, 1998, 12, 423-430.	1.6	71
44	A comparative study of the airside performance of heat sinks having pin fin configurations. International Journal of Heat and Mass Transfer, 2007, 50, 4661-4667.	4.8	70
45	INVESTIGATION OF WAVY FIN-AND-TUBE HEAT EXCHANGERS: A CONTRIBUTION TO DATABANK. Experimental Heat Transfer, 1999, 12, 73-89.	3.2	69
46	Characteristics of flow distribution in compact parallel flow heat exchangers, part II: Modified inlet header. Applied Thermal Engineering, 2011, 31, 3235-3242.	6.0	69
47	An experimental study of the air-side performance of fin-and-tube heat exchangers having plain, louver, and semi-dimple vortex generator configuration. International Journal of Heat and Mass Transfer, 2015, 80, 281-287.	4.8	69
48	Two-phase flow pattern in small diameter tubes with the presence of horizontal return bend. International Journal of Heat and Mass Transfer, 2003, 46, 2975-2981.	4.8	67
49	Heat transfer enhancement by needle-arrayed electrodes – An EHD integrated cooling system. Energy Conversion and Management, 2009, 50, 1789-1796.	9.2	67
50	Air side performance at low Reynolds number of cross-flow heat exchanger using crimped spiral fins. International Communications in Heat and Mass Transfer, 2005, 32, 151-165.	5.6	66
51	Numerical simulation of a heat sink embedded with a vapor chamber and calculation of effective thermal conductivity of a vapor chamber. Applied Thermal Engineering, 2009, 29, 2655-2664.	6.0	63
52	A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger. Energy Conversion and Management, 2011, 52, 1638-1643.	9.2	63
53	Superhydrophobic Si nanowires for enhanced condensation heat transfer. International Journal of Heat and Mass Transfer, 2017, 111, 614-623.	4.8	63
54	A review and perspective on industry high-temperature heat pumps. Renewable and Sustainable Energy Reviews, 2022, 161, 112106.	16.4	63

#	Article	IF	CITATIONS
55	Effect of number of tube rows on the air-side performance of crimped spiral fin-and-tube heat exchanger with a multipass parallel and counter cross-flow configuration. International Journal of Heat and Mass Transfer, 2012, 55, 1403-1411.	4.8	62
56	Influence of horizontal return bend on the two-phase flow pattern in small diameter tubes. Experimental Thermal and Fluid Science, 2004, 28, 145-152.	2.7	61
57	A comparison of the airside performance of the fin-and-tube heat exchangers in wet conditions; with and without hydrophilic coating. Applied Thermal Engineering, 2002, 22, 267-278.	6.0	60
58	Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces. International Journal of Heat and Mass Transfer, 2017, 115, 1032-1041.	4.8	60
59	Scale Effect on Dropwise Condensation on Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 14353-14359.	8.0	59
60	Thermal comfort and energy saving of a personalized PFCU air-conditioning system. Energy and Buildings, 2005, 37, 443-449.	6.7	58
61	In-tube evaporation of HCFC-22 in a 9.52 mm micro-fin/smooth tube. International Journal of Heat and Mass Transfer, 1996, 39, 2559-2569.	4.8	57
62	Measurements and correlations of frictional single-phase and two-phase pressure drops of R-410A flow in small U-type return bends. International Journal of Heat and Mass Transfer, 2004, 47, 2241-2249.	4.8	57
63	An experimental study of the airside performance of the superslit fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 2000, 43, 4475-4482.	4.8	55
64	Effect of the inlet location on the performance of parallel-channel cold-plate. IEEE Transactions on Components and Packaging Technologies, 2006, 29, 30-38.	1.3	54
65	Airside performance of herringbone wavy fin-and-tube heat exchangers – data with larger diameter tube. International Journal of Heat and Mass Transfer, 2011, 54, 1024-1029.	4.8	54
66	Investigation of the flow characteristics within a micronozzle/diffuser. Journal of Micromechanics and Microengineering, 2004, 14, 26-31.	2.6	53
67	System performance of R-1234yf refrigerant in air-conditioning and heat pump system – An overview of current status. Applied Thermal Engineering, 2014, 73, 1412-1420.	6.0	53
68	Single-phase heat transfer and flow friction correlations for microfin tubes. International Journal of Heat and Fluid Flow, 1996, 17, 500-508.	2.4	52
69	An empirical correlation for two-phase frictional performance in small diameter tubes. International Journal of Heat and Mass Transfer, 2002, 45, 3667-3671.	4.8	52
70	Finite circular fin method for heat and mass transfer characteristics for plain fin-and-tube heat exchangers under fully and partially wet surface conditions. International Journal of Heat and Mass Transfer, 2007, 50, 552-565.	4.8	52
71	Enhanced pool boiling of dielectric and highly wetting liquids – A review on surface engineering. Applied Thermal Engineering, 2021, 195, 117074.	6.0	52
72	Flow visualization of wave-type vortex generators having inline fin-tube arrangement. International Journal of Heat and Mass Transfer, 2002, 45, 1933-1944.	4.8	51

#	Article	IF	CITATIONS
73	Enhanced pool boiling of dielectric and highly wetting liquids - a review on enhancement mechanisms. International Communications in Heat and Mass Transfer, 2020, 119, 104950.	5.6	51
74	Effects of Waffle Height on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchangers. Heat Transfer Engineering, 1999, 20, 45-56.	1.9	50
75	Effect of inclination on the convective boiling performance of a microchannel heat sink using HFE-7100. Experimental Thermal and Fluid Science, 2012, 36, 143-148.	2.7	50
76	Investigation of the two-phase convective boiling of HFO-1234yf in a 3.9mm diameter tube. International Journal of Heat and Mass Transfer, 2013, 65, 545-551.	4.8	50
77	A mechanical-electrokinetic battery using a nano-porous membrane. Journal of Micromechanics and Microengineering, 2006, 16, 667-675.	2.6	49
78	A novel heat dissipation fin design applicable for natural convection augmentation. International Communications in Heat and Mass Transfer, 2014, 59, 24-29.	5.6	49
79	Performance improvement of photovoltaic modules via temperature homogeneity improvement. Energy, 2020, 203, 117816.	8.8	49
80	Performance of Rectangular Fin in Wet Conditions: Visualization and Wet Fin Efficiency. Journal of Heat Transfer, 2001, 123, 827-836.	2.1	47
81	Heat transfer and friction characteristics of crimped spiral finned heat exchangers with dehumidification. Applied Thermal Engineering, 2005, 25, 327-340.	6.0	47
82	Horizontal flow boiling of R22 and R407C in a 9.52 mm micro-fin tube. Applied Thermal Engineering, 1996, 16, 719-731.	6.0	46
83	Personal thermal management - A review on strategies, progress, and prospects. International Communications in Heat and Mass Transfer, 2022, 130, 105739.	5.6	45
84	An experimental study on the heat dissipation of LED lighting module using metal/carbon foam. International Communications in Heat and Mass Transfer, 2013, 48, 73-79.	5.6	44
85	A novel oxidized composite braided wires wick structure applicable for ultra-thin flattened heat pipes. International Communications in Heat and Mass Transfer, 2017, 88, 84-90.	5.6	44
86	Optimal design of the semi-dimple vortex generator in the fin and tube heat exchanger. International Journal of Heat and Mass Transfer, 2018, 120, 1173-1186.	4.8	44
87	An experimental study of heat transfer and friction characteristics of typical louver fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 1998, 41, 817-822.	4.8	43
88	Effect of circuit arrangement on the performance of air-cooled condensers. International Journal of Refrigeration, 1999, 22, 275-282.	3.4	42
89	An experimental investigation of air cooling thermal module using various enhancements at low Reynolds number region. International Journal of Heat and Mass Transfer, 2010, 53, 5675-5681.	4.8	42
90	Some design features of a CO2 air conditioner. Applied Thermal Engineering, 2001, 21, 871-880.	6.0	40

#	Article	IF	CITATIONS
91	Performance of the herringbone wavy fin under dehumidifying conditions. International Journal of Heat and Mass Transfer, 2002, 45, 5035-5044.	4.8	40
92	Effect of fin pitches on the air-side performance of crimped spiral fin-and-tube heat exchangers with a multipass parallel and counter cross-flow configuration. International Journal of Heat and Mass Transfer, 2011, 54, 2234-2240.	4.8	40
93	Air-side performance of herringbone wavy fin-and-tube heat exchangers under dehumidifying condition – Data with larger diameter tube. International Journal of Heat and Mass Transfer, 2012, 55, 3054-3060.	4.8	39
94	Effect of fin thickness on the air-side performance of wavy fin-and-tube heat exchangers under dehumidifying conditions. International Journal of Heat and Mass Transfer, 2006, 49, 2587-2596.	4.8	38
95	A review on reduction method for heat and mass transfer characteristics of fin-and-tube heat exchangers under dehumidifying conditions. International Journal of Heat and Mass Transfer, 2009, 52, 2370-2378.	4.8	38
96	Investigation of bubble effect in microfluidic fuel cells by a simplified microfluidic reactor. Applied Thermal Engineering, 2010, 30, 1863-1871.	6.0	38
97	Enhancing corrosion resistance of Al 5050 alloy based on surface roughness and its fabrication methods; an experimental investigation. Journal of Materials Research and Technology, 2021, 11, 1859-1867.	5.8	38
98	Study on Pd functionalization of microcantilever for hydrogen detection promotion. Sensors and Actuators B: Chemical, 2008, 129, 72-78.	7.8	37
99	Influence of electrode configuration on the heat transfer performance of a LED heat source. International Journal of Heat and Mass Transfer, 2014, 77, 795-801.	4.8	37
100	On cold-aisle containment of a container datacenter. Applied Thermal Engineering, 2017, 112, 133-142.	6.0	36
101	Augmentation of natural convection heat sink via using displacement design. International Journal of Heat and Mass Transfer, 2020, 154, 119757.	4.8	36
102	Low-voltage electroosmotic pumping using porous anodic alumina membranes. Microfluidics and Nanofluidics, 2008, 5, 235-244.	2.2	35
103	An investigation of a top-mounted domestic refrigerator. Energy Conversion and Management, 2010, 51, 1422-1427.	9.2	35
104	Two-phase slug flow across small diameter tubes with the presence of vertical return bend. International Journal of Heat and Mass Transfer, 2005, 48, 2342-2346.	4.8	34
105	A tube-by-tube reduction method for simultaneous heat and mass transfer characteristics for plain fin-and-tube heat exchangers in dehumidifying conditions. Heat and Mass Transfer, 2005, 41, 756-765.	2.1	34
106	Water permeation analysis on gas diffusion layers of proton exchange membrane fuel cells for Teflon-coating annotation. Journal of Power Sources, 2010, 195, 536-540.	7.8	34
107	The numerical simulation with staggered alternation locations and multi-flow directions on the thermal performance of double-layer microchannel heat sinks. Applied Thermal Engineering, 2019, 163, 114332.	6.0	34
108	A deep learning method for estimating the boiling heat transfer coefficient of porous surfaces. Journal of Thermal Analysis and Calorimetry, 2021, 145, 1911-1923.	3.6	34

#	Article	IF	CITATIONS
109	Rationally based model for evaluating the optimal refrigerant mass charge in refrigerating machines. Energy Conversion and Management, 2001, 42, 2083-2095.	9.2	33
110	The effects of frost thickness on the heat transfer of finned tube heat exchanger subject to the combined influence of fan types. Applied Thermal Engineering, 2008, 28, 728-737.	6.0	33
111	Investigation of the semi-dimple vortex generator applicable to fin-and-tube heat exchangers. Applied Thermal Engineering, 2015, 88, 192-197.	6.0	33
112	A Visual Study of Two-Phase Flow Patterns of HFC-134a and Lubricant Oil Mixtures. Heat Transfer Engineering, 2002, 23, 13-22.	1.9	32
113	Some observations of the frost formation in free convection: with and without the presence of electric field. International Journal of Heat and Mass Transfer, 2004, 47, 3491-3505.	4.8	32
114	Airside performance of fin-and-tube heat exchangers in dehumidifying conditions – Data with larger diameter. International Journal of Heat and Mass Transfer, 2010, 53, 1603-1608.	4.8	32
115	An overview of the effect of lubricant on the heat transfer performance on conventional refrigerants and natural refrigerant R-744. Renewable and Sustainable Energy Reviews, 2012, 16, 5071-5086.	16.4	32
116	Effects of surface inclination and type of surface roughness on the nucleate boiling heat transfer performance of HFE-7200 dielectric fluid. International Journal of Heat and Mass Transfer, 2020, 147, 119015.	4.8	32
117	Effect of elliptical winglet on the air-side performance of fin-and-tube heat exchanger. International Journal of Heat and Mass Transfer, 2018, 123, 583-599.	4.8	31
118	Performance of novel liquid-cooled porous heat sink via 3-D laser additive manufacturing. International Journal of Heat and Mass Transfer, 2019, 137, 558-564.	4.8	31
119	A simplified transient three-dimensional model for estimating the thermal performance of the vapor chambers. Applied Thermal Engineering, 2006, 26, 2087-2094.	6.0	30
120	Investigations of the Thermal Spreading Effects of Rectangular Conduction Plates and Vapor Chamber. Journal of Electronic Packaging, Transactions of the ASME, 2007, 129, 348-355.	1.8	30
121	On the heat transfer characteristics of heat sinks: Influence of fin spacing at low Reynolds number region. International Journal of Heat and Mass Transfer, 2007, 50, 2667-2674.	4.8	30
122	A visual observation of the air–water two-phase flow in small diameter tubes subject to the influence of vertical return bends. Chemical Engineering Research and Design, 2008, 86, 1223-1235.	5.6	30
123	Transient response of a 50ÂkW organic Rankine cycle system. Energy, 2012, 48, 532-538.	8.8	30
124	Performance and two-phase flow pattern for micro flat heat pipes. International Journal of Heat and Mass Transfer, 2014, 77, 1115-1123.	4.8	30
125	Performance improvement of high power liquid-cooled heat sink via non-uniform metal foam arrangement. Applied Thermal Engineering, 2015, 87, 41-46.	6.0	30
126	Improvements of Airflow Distribution in a Container Data Center. Energy Procedia, 2015, 75, 1819-1824.	1.8	30

#	Article	IF	CITATIONS
127	A study of heat transfer enhancement via corona discharge by using a plate corona electrode. Journal of Electrostatics, 2017, 87, 1-10.	1.9	30
128	Investigation of the evacuation pressure on the performance of pulsating heat pipe. International Communications in Heat and Mass Transfer, 2017, 85, 23-28.	5.6	29
129	Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of Al2O3 and TiO2. International Journal of Heat and Mass Transfer, 2018, 117, 787-798.	4.8	29
130	Assessment of an energy efficient closed loop heat pump dryer for high moisture contents materials: An experimental investigation and AI based modelling. Energy, 2022, 238, 121819.	8.8	29
131	Technology Review - A Survey of Recent Patents of Fin-and-Tube Heat Exchangers. Journal of Enhanced Heat Transfer, 2000, 7, 333-345.	1.1	29
132	HEAT TRANSFER AND FRICTION CHARACTERISTICS OF CONVEX-LOUVER FIN-AND-TUBE HEAT EXCHANGERS. Experimental Heat Transfer, 1996, 9, 61-78.	3.2	28
133	Two-phase flow pressure change subject to sudden contraction in small rectangular channels. International Journal of Multiphase Flow, 2009, 35, 297-306.	3.4	28
134	Two-phase heat transfer characteristics for R-22/R-407C in a 6.5-mm smooth tube. International Journal of Heat and Fluid Flow, 1997, 18, 550-558.	2.4	27
135	Airside performance of herringbone finâ€andâ€tube heat exchangers in wet conditions. Canadian Journal of Chemical Engineering, 1999, 77, 1225-1230.	1.7	27
136	Frictional performance of R-22 and R-410A inside a 5.0 mm wavy diameter tube. International Journal of Heat and Mass Transfer, 2003, 46, 755-760.	4.8	27
137	On the Heat Transfer Characteristics of Heat Sinks: With and Without Vortex Generators. IEEE Transactions on Components and Packaging Technologies, 2010, 33, 391-397.	1.3	27
138	Air side performance of thermosyphon heat exchanger in low Reynolds number region: with and without electric field. Energy Conversion and Management, 2002, 43, 1791-1800.	9.2	26
139	A SURVEY OF RECENT PATENTS OF FIN-AND-TUBE HEAT EXCHANGERS FROM 2001 TO 2009. International Journal of Air-Conditioning and Refrigeration, 2010, 18, 1-13.	0.7	26
140	Thermal characterization of shrouded plate fin array on an LED backlight panel. Applied Thermal Engineering, 2011, 31, 2909-2915.	6.0	26
141	Performance of a tube-in-tube CO2 gas cooler. International Journal of Refrigeration, 2012, 35, 2033-2038.	3.4	26
142	Dynamic Response of a 50 kW Organic Rankine Cycle System in Association with Evaporators. Energies, 2014, 7, 2436-2448.	3.1	26
143	A Quick Overview of Compact Air-Cooled Heat Sinks Applicable for Electronic Cooling—Recent Progress. Inventions, 2017, 2, 5.	2.5	26
144	Experimental investigation of 3-kW organic Rankine cycle (ORC) system subject to heat source conditions: A new appraisal for assessment. Energy, 2021, 217, 119342.	8.8	26

#	Article	IF	CITATIONS
145	Some Aspects of Plate Fin-and-Tube Heat Exchangers: With and Without Louvers. Journal of Enhanced Heat Transfer, 1999, 6, 357-368.	1.1	26
146	Modeling and simulation of the transcritical CO2 heat pump system. International Journal of Refrigeration, 2013, 36, 2048-2064.	3.4	25
147	An overview for the heat transfer performance of HFO-1234yf. Renewable and Sustainable Energy Reviews, 2013, 19, 444-453.	16.4	25
148	An experimental study of inclination on the boiling heat transfer characteristics of a micro-channel heat sink using HFE-7100. International Communications in Heat and Mass Transfer, 2015, 62, 13-17.	5.6	25
149	A novel double pipe pulsating heat pipe design to tackle inverted heat source arrangement. Applied Thermal Engineering, 2016, 106, 697-701.	6.0	25
150	Compound Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers through Boundary Layer Restarting and Swirled Flow. Energies, 2018, 11, 1959.	3.1	25
151	Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems. Energies, 2021, 14, 3946.	3.1	25
152	A high-fidelity approach to correlate the nucleate pool boiling data of roughened surfaces. International Journal of Multiphase Flow, 2021, 142, 103719.	3.4	25
153	Liquid-to-vapor phase change heat transfer evaluation and parameter sensitivity analysis of nanoporous surface coatings. International Journal of Heat and Mass Transfer, 2022, 194, 123088.	4.8	25
154	Heat Transfer and Flow Pattern Characteristics for HFE-7100 Within Microchannel Heat Sinks. Heat Transfer Engineering, 2011, 32, 697-704.	1.9	24
155	Effect of non-uniform heating on the performance of the microchannel heat sinks. International Communications in Heat and Mass Transfer, 2013, 43, 57-62.	5.6	24
156	Heat transfer enhancement of an impinging synthetic air jet using diffusion-shaped orifice. Applied Thermal Engineering, 2016, 94, 178-185.	6.0	24
157	Heat transfer enhancement of wavy fin-and-tube heat exchangers via innovative compound designs. International Journal of Thermal Sciences, 2020, 149, 106211.	4.9	24
158	CFD analysis and experimental verification on a new type of air-cooled heat sink for reducing maximum junction temperature. International Journal of Heat and Mass Transfer, 2020, 148, 119094.	4.8	24
159	Performance analysis of thermosyphon heat exchanger under electric field. Energy Conversion and Management, 2003, 44, 1163-1175.	9.2	23
160	Finite circular fin method for wavy fin-and-tube heat exchangers under fully and partially wet surface conditions. International Journal of Heat and Mass Transfer, 2008, 51, 4002-4017.	4.8	23
161	Influence of bonding glues on the vibration of piezoelectric fans. Sensors and Actuators A: Physical, 2008, 148, 115-121.	4.1	23
162	Two-phase flow characteristics across sudden contraction in small rectangular channels. Experimental Thermal and Fluid Science, 2008, 32, 1609-1619.	2.7	23

#	Article	IF	CITATIONS
163	A Comparative Study of Nozzle/Diffuser Micropumps with Novel Valves. Molecules, 2012, 17, 2178-2187.	3.8	23
164	Effects of tube shapes on the performance of recuperative and regenerative heat exchangers. Energy, 2019, 169, 1-17.	8.8	23
165	Airside performance of sinusoidal wavy fin-and-tube heat exchangers subject to large-diameter tubes with round or oval configuration. Applied Thermal Engineering, 2020, 164, 114469.	6.0	23
166	Optimization of the airside thermal performance of mini-channel-flat-tube radiators by using composite straight-and-louvered fins. International Journal of Heat and Mass Transfer, 2020, 160, 120163.	4.8	23
167	Influence of oil on R-410A two-phase frictional pressure drop in a small U-type wavy tube. International Communications in Heat and Mass Transfer, 2005, 32, 797-808.	5.6	22
168	Two-phase flow characteristics across sudden expansion in small rectangular channels. Experimental Thermal and Fluid Science, 2007, 32, 696-706.	2.7	22
169	Experimental and numerical study on the performance of passive heat sink having alternating layout. International Journal of Heat and Mass Transfer, 2019, 135, 822-836.	4.8	22
170	Experimental investigation on thermal management for small container data center. Journal of Building Engineering, 2019, 21, 317-327.	3.4	22
171	Optimization of thermal comfort, indoor quality, and energy-saving in campus classroom through deep Q learning. Case Studies in Thermal Engineering, 2021, 24, 100842.	5.7	22
172	Two-Phase Flow Resistance of Refrigerants R-22, R-410A and R-407C in Small Diameter Tubes. Chemical Engineering Research and Design, 2001, 79, 553-560.	5.6	21
173	Influence of horizontal return bend on the twoâ€phase flow pattern in a 6.9 mm diameter tube. Canadian Journal of Chemical Engineering, 2002, 80, 478-484.	1.7	21
174	Two-phase frictional pressure drop in small rectangular channels. Experimental Thermal and Fluid Science, 2007, 32, 60-66.	2.7	21
175	A new correlation and the review of two-phase flow pressure change across sudden expansion in small channels. International Journal of Heat and Mass Transfer, 2010, 53, 4287-4295.	4.8	21
176	Effect of cannelure fin configuration on compact aircooling heat sink. Applied Thermal Engineering, 2011, 31, 1640-1647.	6.0	20
177	Effect of oscillatory EHD on the heat transfer performance of a flat plate. International Journal of Heat and Mass Transfer, 2013, 61, 419-424.	4.8	20
178	Performance evaluation of a tube-in-tube CO2 gas cooler used in a heat pump water heater. Experimental Thermal and Fluid Science, 2014, 54, 304-312.	2.7	20
179	Nucleate boiling heat transfer of R-134a and R-134a/POE lubricant mixtures on smooth tube. Applied Thermal Engineering, 2021, 185, 116359.	6.0	20
180	On the assessment of the mechanical properties of additively manufactured lattice structures. Engineering Analysis With Boundary Elements, 2022, 142, 93-116.	3.7	20

#	Article	IF	CITATIONS
181	On the heat and mass analogy of fin-and-tube heat exchanger. International Journal of Heat and Mass Transfer, 2008, 51, 2055-2059.	4.8	19
182	A rationally based model applicable for heat pump tumble dryer. Drying Technology, 2019, 37, 691-706.	3.1	19
183	Moist air condensation heat transfer enhancement via superhydrophobicity. International Journal of Heat and Mass Transfer, 2022, 182, 121973.	4.8	19
184	Effect of inclination angle on free convection thermal performance of louver finned heat exchanger. International Journal of Heat and Mass Transfer, 2007, 50, 361-366.	4.8	18
185	On the heat transfer correlation for membrane distillation. Energy Conversion and Management, 2011, 52, 1968-1973.	9.2	18
186	Analytical analysis and experimental verification of trapezoidal fin for assessment of heat sink performance and material saving. Applied Thermal Engineering, 2016, 98, 203-212.	6.0	18
187	Airflow Management on the Efficiency Index of a Container Data Center Having Overhead Air Supply. Journal of Electronic Packaging, Transactions of the ASME, 2017, 139, .	1.8	18
188	Utilization of low-melting temperature alloy with confined seal for reducing thermal contact resistance. Applied Thermal Engineering, 2019, 163, 114438.	6.0	18
189	Comparative study for CO2 and R-134a heat pump tumble dryer – A rational approach. International Journal of Refrigeration, 2019, 106, 474-491.	3.4	18
190	Numerical investigation of thermal and hydraulic performance of shell and plate heat exchanger. Applied Thermal Engineering, 2020, 167, 114705.	6.0	18
191	Determining the Factors Affecting the Boiling Heat Transfer Coefficient of Sintered Coated Porous Surfaces. Sustainability, 2021, 13, 12631.	3.2	18
192	Frictional performance of highly viscous fluid in minichannels. Applied Thermal Engineering, 2004, 24, 2243-2250.	6.0	17
193	A Fully Wet and Fully Dry Tiny Circular Fin Method for Heat and Mass Transfer Characteristics for Plain Fin-and-Tube Heat Exchangers Under Dehumidifying Conditions. Journal of Heat Transfer, 2007, 129, 1256-1267.	2.1	17
194	Two-phase frictional pressure drop measurements in U-type wavy tubes subject to horizontal and vertical arrangements. Applied Thermal Engineering, 2008, 28, 847-855.	6.0	17
195	Experimental and numerical investigation of brazed plate heat exchangers – A new approach. Applied Thermal Engineering, 2022, 200, 117694.	6.0	17
196	Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings. Nanomaterials, 2021, 11, 3383.	4.1	17
197	Heat and Mass Transfer Characteristics for Finned Tube Heat Exchangers with Humidification. Journal of Thermophysics and Heat Transfer, 2007, 21, 361-371.	1.6	16
198	Theoretical study of oscillatory phenomena in a horizontal closed-loop pulsating heat pipe with asymmetrical arrayed minichannel. International Communications in Heat and Mass Transfer, 2012, 39, 923-930.	5.6	16

#	Article	IF	CITATIONS
199	Experimental investigation on defrosting of a cold flat plate via ultrasonic vibration under natural convection. Applied Thermal Engineering, 2020, 179, 115729.	6.0	16
200	Single-phase and two-phase frictional characteristics of small u-type wavy tubes. International Communications in Heat and Mass Transfer, 2004, 31, 303-314.	5.6	15
201	Correlations for wet surface ratio of fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 2010, 53, 568-573.	4.8	15
202	An experimental and analytical investigation of the photo-thermal-electro characteristics of a high power InGaN LED module. Applied Thermal Engineering, 2016, 98, 756-765.	6.0	15
203	Experiments for suitability of plastic heat exchangers for dehumidification applications. Applied Thermal Engineering, 2019, 158, 113827.	6.0	15
204	On the Airside Performance of Fin-and-Tube Heat Exchangers. , 1999, , 141-162.		15
205	Nucleate pool boiling heat transfer of R-1234ze(E) and R-134a on GEWA-B5H and smooth tube with the influence of POE oil. Applied Thermal Engineering, 2022, 201, 117779.	6.0	15
206	Pool boiling of R-22, R-124 and R-134a on a plain tube. International Journal of Heat and Mass Transfer, 1997, 40, 1657-1666.	4.8	14
207	Two-Phase Flow Across Small Sudden Expansions and Contractions. Heat Transfer Engineering, 2010, 31, 298-309.	1.9	14
208	An experimental study of in-tube evaporation of R-22 inside a 6.5-mm smooth tube. International Journal of Heat and Fluid Flow, 1998, 19, 259-269.	2.4	13
209	Vapor pressure of R-410A/oil and R-407C/oil mixtures. Applied Thermal Engineering, 2001, 21, 863-870.	6.0	13
210	Two-phase frictional pressure drop of R-134a and R-410A refrigerant–oil mixtures in straight tubes and U-type wavy tubes. Experimental Thermal and Fluid Science, 2007, 31, 291-299.	2.7	13
211	Two-phase pressure drops and flow pattern observations in 90° bends subject to upward, downward and horizontal arrangements. Experimental Thermal and Fluid Science, 2015, 68, 484-492.	2.7	13
212	Energy-saving of air-cooling heat exchangers operating under wet conditions with the help of superhydrophobic coating. Energy Conversion and Management, 2021, 229, 113740.	9.2	13
213	Performance of displaced fin heatsink in natural convection subject to upward and downward arrangement. International Journal of Thermal Sciences, 2021, 162, 106797.	4.9	13
214	NUCLEATE POOL BOILING OF SINTERED COATED POROUS SURFACES WITH DIELECTRIC LIQUID, HFE-7200. Journal of Enhanced Heat Transfer, 2020, 27, 767-784.	1.1	13
215	Two-Phase Pressure Drop of Air-Water in Small Horizontal Tubes. Journal of Thermophysics and Heat Transfer, 2001, 15, 409-415.	1.6	12
216	AIRSIDE PERFORMANCE OF STAGGERED TUBE BUNDLE HAVING SHALLOW TUBE ROWS. Chemical Engineering Communications, 2001, 187, 129-147.	2.6	12

#	Article	IF	CITATIONS
217	An amendment of the generalized friction correlation for louver fin geometry. International Journal of Heat and Mass Transfer, 2006, 49, 4250-4253.	4.8	12
218	Two-phase flow pattern and frictional performance across small rectangular channels. Applied Thermal Engineering, 2009, 29, 1309-1318.	6.0	12
219	Influence of Lubricant on the Nucleate Boiling Heat Transfer Performance of Refrigerant—A Review. Heat Transfer Engineering, 2014, 35, 651-663.	1.9	12
220	Effect of pressure on the moisture adsorption of silica gel and zeolite 13X adsorbents. Heat and Mass Transfer, 2015, 51, 441-447.	2.1	12
221	An experimental study and empirical correlations to describe the effect of lubricant oil on the nucleate boiling heat transfer performance for R-1234ze and R-134a. International Communications in Heat and Mass Transfer, 2018, 97, 78-84.	5.6	12
222	Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter. Energies, 2019, 12, 105.	3.1	12
223	Assessment on rack intake flowrate uniformity of data center with cold aisle containment configuration. Journal of Building Engineering, 2020, 30, 101331.	3.4	12
224	Predictive models on the frost formation for plain surface - a review and comparative study. International Communications in Heat and Mass Transfer, 2021, 129, 105670.	5.6	12
225	Deep Learning Neural Networks for Short-Term PV Power Forecasting via Sky Image Method. Energies, 2022, 15, 4779.	3.1	12
226	Transient response characteristics of two-phase condensing flows. International Journal of Multiphase Flow, 1990, 16, 139-151.	3.4	11
227	Effect of flow deflector on the flux improvement in direct contact membrane distillation. Desalination, 2010, 253, 16-21.	8.2	11
228	A novel â€~â€~partial bypass―concept to augment the performance of air-cooled heat exchangers. International Journal of Heat and Mass Transfer, 2012, 55, 5367-5372.	4.8	11
229	Orientation effect on heat transfer of a shrouded LED backlight panel with a plate-fin array. International Communications in Heat and Mass Transfer, 2013, 42, 51-54.	5.6	11
230	A novel trapezoid fin pattern applicable for air-cooled heat sink. Heat and Mass Transfer, 2015, 51, 1631-1637.	2.1	11
231	Experimental Investigation of the Thermofluid Characteristics of Shell-and-Plate Heat Exchangers. Energies, 2020, 13, 5304.	3.1	11
232	Performance Improvement of a Double-Layer Microchannel Heat Sink via Novel Fin Geometry—A Numerical Study. Energies, 2021, 14, 3585.	3.1	11
233	OPTIMIZATION OF THE LOUVER FIN-AND-TUBE HEAT EXCHANGERS-A PARAMETRIC APPROACH. Journal of Enhanced Heat Transfer, 2020, 27, 289-312.	1.1	11
234	Performance of two-phase loop thermosiphon with graphene nanofluid. Applied Thermal Engineering, 2022, 200, 117714.	6.0	11

#	Article	IF	CITATIONS
235	The Effect of Ventilation Types on Pollutant Removal in a Large Space Plant with Multiple Pollutant Sources. Indoor and Built Environment, 2011, 20, 488-500.	2.8	10
236	A Novel Thermal Module with 3-D Configuration Pulsating Heat Pipe for High-Flux Applications. Energies, 2018, 11, 3425.	3.1	10
237	Nucleate Pool Boiling Heat Transfer from High-Flux Tube with Dielectric Fluid HFE-7200. Energies, 2020, 13, 2313.	3.1	10
238	Investigation of performance augmentation for natural convective heatsink with the help of chimney. Applied Thermal Engineering, 2020, 178, 115586.	6.0	10
239	Non-Uniform Three-Dimensional Pulsating Heat Pipe for Anti-Gravity High-Flux Applications. Energies, 2020, 13, 3068.	3.1	10
240	Thermal performance and entropy generation of singleâ€layer and doubleâ€layer constructal Yâ€shaped bionic microchannel heat sinks. International Journal of Energy Research, 2021, 45, 9449-9462.	4.5	10
241	ENHANCING BOILING HEAT TRANSFER FOR ELECTRONICS COOLING BY EMBEDDING AN ARRAY OF MICROGROOVES INTO SANDBLASTED SURFACES. Heat Transfer Research, 2021, 52, 71-89.	1.6	10
242	Numerical investigation of the effect of chevron angle on thermofluids characteristics of non-mixed and mixed brazed plate heat exchangers with experimental validation. International Journal of Heat and Mass Transfer, 2022, 184, 122278.	4.8	10
243	Experimental analysis of airflow uniformity and energy consumption in data centers. Applied Thermal Engineering, 2022, 209, 118302.	6.0	10
244	Analysis of evaporation of non-azeotropic refrigerants in a horizontal tube. Applied Thermal Engineering, 1996, 16, 817-827.	6.0	9
245	A numerical method for thermally non-equilibrium condensing flow in a double-pipe condenser. Applied Thermal Engineering, 1997, 17, 647-660.	6.0	9
246	Characteristics of air–water twoâ€phase flow in a 3â€mm smooth tube. Canadian Journal of Chemical Engineering, 2000, 78, 1011-1016.	1.7	9
247	Novel no-moving-part valves for microfluidic devices. Microsystem Technologies, 2010, 16, 1691-1697.	2.0	9
248	A visual observation of the air flow pattern for the high speed nozzle applicable to high power laser cutting and welding. International Communications in Heat and Mass Transfer, 2013, 49, 49-54.	5.6	9
249	Analytical analysis and experimental verification of interleaved parallelogram heat sink. Applied Thermal Engineering, 2017, 112, 739-749.	6.0	9
250	Heat transfer simulation of annular elliptical fin-and-tube heat exchanger by transition SST model. Journal of Central South University, 2020, 27, 2324-2337.	3.0	9
251	Investigation of heat and mass transfer behavior of mannitol during vial freeze-drying. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2393-2404.	3.6	9
252	Potential evaluation of water-based ferric oxide (Fe2O3-water) nanocoolant: An experimental study. Energy, 2022, 246, 123441.	8.8	9

#	Article	IF	CITATIONS
253	Performance improvement of heat sink with vapor chamber base and heat pipe. Applied Thermal Engineering, 2022, 215, 118932.	6.0	9
254	Analysis of transient flow surge phenomena in a single-tube condenser. International Communications in Heat and Mass Transfer, 1988, 15, 257-268.	5.6	8
255	Investigations of Pool Boiling Heat Transfer of Binary Refrigerant Mixtures. Heat Transfer Engineering, 1997, 18, 61-72.	1.9	8
256	Performance Improvement of Thermosyphon Heat Exchangers by Using Two Kinds of Working Fluids. Heat Transfer Engineering, 2001, 22, 28-40.	1.9	8
257	Frictional Performance of U-Type Wavy Tubes. Journal of Fluids Engineering, Transactions of the ASME, 2003, 125, 880-886.	1.5	8
258	An algorithm for simulation of the performance of air-cooled heat exchanger applications subject to the influence of complex circuitry. Applied Thermal Engineering, 2006, 26, 1-9.	6.0	8
259	RECENT ADVANCES IN FIN-AND-TUBE HEAT EXCHANGER. International Journal of Air-Conditioning and Refrigeration, 2011, 19, 291-301.	0.7	8
260	Enhanced condensation heat transfer for dielectric fluid within microchannel heat sink. International Journal of Heat and Mass Transfer, 2017, 106, 518-525.	4.8	8
261	CFD Investigation of Airflow Management in a Small Container Data Center. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 2177-2188.	2.5	8
262	A mechanistic model for nucleate boiling heat transfer performance with lubricant-refrigerant mixture. International Journal of Heat and Mass Transfer, 2020, 159, 120092.	4.8	8
263	Influence of Surface Modification on the Transient Dehumidification Performance of Fin-and-tube Heat Exchanger. International Journal of Heat and Mass Transfer, 2021, 173, 121202.	4.8	8
264	Investigation of the performance of a transcritical CO2 heat pump system subject to heated water conditions: Perspective from the second law. Applied Thermal Engineering, 2021, 193, 116999.	6.0	8
265	Energy saving of fans in air-cooled server via deep reinforcement learning algorithm. Energy Reports, 2021, 7, 3437-3448.	5.1	8
266	Transient response of a double-pipe condenser to change of coolant flowrate. International Communications in Heat and Mass Transfer, 1989, 16, 325-334.	5.6	7
267	Performance of piezoelectric fins for heat dissipation. International Journal of Heat and Mass Transfer, 2015, 86, 72-77.	4.8	7
268	Analysis and experimental verification of weight saving with trapezoidal base heat sink. Applied Thermal Engineering, 2018, 132, 275-282.	6.0	7
269	Energy-saving potential of separated two-phase thermosiphon loops for data center cooling. Journal of Thermal Analysis and Calorimetry, 2020, 141, 245-265.	3.6	7
270	Experimental Analysis of a Heat Pump Dryer with an External Desiccant Wheel Dryer. Processes, 2021, 9, 1216.	2.8	7

#	Article	IF	CITATIONS
271	Impact of Overhead Air Supply Layout on the Thermal Performance of a Container Data Center. Journal of Electronic Packaging, Transactions of the ASME, 2020, 142, .	1.8	7
272	Heat transfer characteristics of Râ€454B and Râ€454B/POEâ€oil mixture on smooth and GEWA tube: Alternative to Râ€410A. International Journal of Heat and Mass Transfer, 2022, 193, 122972.	4.8	7
273	Some Observations of the Frost Formation in Fin Arrays. Heat Transfer Engineering, 2004, 25, 35-47.	1.9	6
274	Response of a 50kW Organic Rankine Cycle System Subject to Influence of Evaporators. Energy Procedia, 2014, 61, 635-638.	1.8	6
275	Enhanced dehumidification via hybrid hydrophilic/hydrophobic morphology having wedge gradient and drainage channels. Heat and Mass Transfer, 2019, 55, 3359-3368.	2.1	6
276	Airside Performance of H-Type Finned Tube Banks with Surface Modifications. Energies, 2019, 12, 584.	3.1	6
277	Experimental and Numerical Study Upon Uniformity of Impingement Cooling With Pin-Fin Heat Sink. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 88-98.	2.5	6
278	A Semi-Empirical Model for Predicting Frost Properties. Processes, 2021, 9, 412.	2.8	6
279	An experimental investigation on convective boiling heat transfer of R-454B with lubricant oil of POE-32 or POE-68 mixture in a horizontal smooth tube. International Journal of Heat and Mass Transfer, 2021, 181, 121990.	4.8	6
280	Heat Transfer Performance of R-1234ze(E) with the Effect of High-Viscosity POE Oil on Enhanced GEWA-B5H Tube. Processes, 2021, 9, 2285.	2.8	6
281	Effect of partial bypass on the heat transfer performance of dehumidifying coils. International Communications in Heat and Mass Transfer, 2014, 58, 132-137.	5.6	5
282	A novel micro-channel heat sink with trapezoid drainage for enhancing condensation heat transfer of dielectric fluid. Experimental Thermal and Fluid Science, 2019, 106, 11-24.	2.7	5
283	Investigations regarding the influence of soft metal and low melting temperature alloy on thermal contact resistance. International Communications in Heat and Mass Transfer, 2020, 116, 104626.	5.6	5
284	Performance of thermofluidic characteristics of recuperative wavy-plate heat exchangers. International Journal of Heat and Mass Transfer, 2021, 170, 121027.	4.8	5
285	Effect of Non-Condensable gas on condensing performance of HFE7100 With/Without hydrophobic coating. Applied Thermal Engineering, 2022, 213, 118807.	6.0	5
286	A New Approach to Correlate the Frictional Performance of Fin-and-Tube Heat Exchangers in Wet Conditions. Heat Transfer Engineering, 2002, 23, 15-21.	1.9	4
287	The analysis of triangular cycles of cooling and heating. Applied Thermal Engineering, 2005, 25, 21-30.	6.0	4
288	Extending the Limit of Direct Air-Cooling Heat Sink. Heat Transfer Engineering, 2008, 29, 911-912.	1.9	4

#	Article	IF	CITATIONS
289	Enhanced Heat Transfer Performance of Air-Cooled Heat Exchangers Using "Partial Bypass―Concept. Heat Transfer Engineering, 2012, 33, 1217-1219.	1.9	4
290	The New Mathematical Models for Plain Fin-and-Tube Heat Exchangers With Dehumidification. Journal of Heat Transfer, 2015, 137, .	2.1	4
291	Performance analysis of a membrane dehumidifier system subject to component characteristics – a numerical model. Science and Technology for the Built Environment, 2020, 26, 987-999.	1.7	4
292	Thermal design aspects for improving temperature homogeneity of silicon wafer during thermal processing in microlithography. Applied Thermal Engineering, 2020, 171, 115118.	6.0	4
293	An experimental study on frosting and hybrid defrosting of a cold flat plate under natural convection. International Journal of Heat and Mass Transfer, 2021, 164, 120560.	4.8	4
294	Enhancement on heat transfer of a passive heat sink with closed thermosiphon loop. Applied Thermal Engineering, 2021, 183, 116243.	6.0	4
295	Performance of Commercially Open Refrigerated Showcases with and without Ice Storage—A Case Study. Processes, 2021, 9, 683.	2.8	4
296	Superhydrophobic fins with inclined arrangement for enhancing energy saving of air-cooled wet heat exchangers. International Journal of Heat and Mass Transfer, 2021, 178, 121636.	4.8	4
297	PIV Investigation of the Flow Maldistribution in a Multi-Channel Cold Plate Subject to Inlet Locations. Journal of Enhanced Heat Transfer, 2007, 14, 65-76.	1.1	4
298	Numerical study of oblique fins under natural convection with experimental validation. International Journal of Thermal Sciences, 2022, 179, 107668.	4.9	4
299	Investigation of fouling mitigation using stationary and rotating twisted tapes. Applied Thermal Engineering, 2022, 214, 118896.	6.0	4
300	Microcantilever Pb[sup 2+] Sensor Using Re-Supramolecular Functionalization with Crown-Ether-Like Recognition Sites. Electrochemical and Solid-State Letters, 2007, 10, J161.	2.2	3
301	Numerical investigation of the intercooler of a two-stage refrigerant compressor. Applied Thermal Engineering, 2007, 27, 2536-2548.	6.0	3
302	Constraints-free modeling and experimental validation of a transcritical CO2 system for medium and large scale applications. Applied Thermal Engineering, 2017, 124, 136-151.	6.0	3
303	A generalized log-linear poisson-modeled correlation to predict the optimal heat rejection pressure of transcritical CO2 systems. Science and Technology for the Built Environment, 2018, 24, 897-907.	1.7	3
304	Improvement on dehumidifier performance using a plastic assisted condenser. Applied Thermal Engineering, 2020, 167, 114797.	6.0	3
305	Enhancement of the accuracy of ultrasonic flowmeters by applying the PCA algorithm in predicting flow patterns. Measurement Science and Technology, 2021, 32, 085901.	2.6	3
306	A numerical study of the supercritical CO2 plate heat exchanger subject to U-type, Z-type, and multi-pass arrangements. Heat and Mass Transfer, 2018, 54, 69-79.	2.1	2

#	ARTICLE	IF	CITATIONS
307	Performance analysis of a simulated container data center subject to airflow resistance. Energy Efficiency, 2021, 14, 1.	2.8	2
308	A Novel Means Combining Corona Discharge and Electrostatic Force-Induced Vibration for Convective Heat Transfer. Journal of Heat Transfer, 2020, 142, .	2.1	2
309	AN EXPERIMENTAL STUDY OF PLASTIC HEAT EXCHANGERS APPLICABLE FOR DEHUMIDIFICATION. , 2018, , .		2
310	Thermal Performance Analysis and Heat Transfer Enhancement Study in an Antminer Mining Machine. Journal of Thermal Science and Engineering Applications, 2021, 13, .	1.5	2
311	An experimental investigation on the cooling curve and drying behavior of static and spin-frozen samples in freeze–drying process. Journal of Thermal Analysis and Calorimetry, 2022, 147, 11221-11230.	3.6	2
312	Computational Fluid Dynamics Study on Heat Transfer Augmentation in Tube With Various V-Cut Twisted Tape. Journal of Heat Transfer, 2022, 144, .	2.1	2
313	Influence of Circuitry Arrangement on the Pressure Drops of Two-Row Finned Tube Evaporators. Journal of Energy Resources Technology, Transactions of the ASME, 2001, 123, 100-103.	2.3	1
314	Air-Water Two-Phase Pressure Drop in U-Type Wavy Tubes. Journal of Thermophysics and Heat Transfer, 2004, 18, 364-369.	1.6	1
315	Flow Patterns of Two-Phase Flow Vertical U-Type Return Bends. Journal of Thermophysics and Heat Transfer, 2006, 20, 624-627.	1.6	1
316	Visual Observations of Air-water Two-phase Flow Across Small Diameter Tubes With Vertical Return Bends. Canadian Journal of Chemical Engineering, 2008, 83, 548-553.	1.7	1
317	A Novel Condensate-Free Refrigerated Cold Plate for Electronic Cooling. HVAC and R Research, 2010, 16, 3-14.	0.6	1
318	Experimental investigation of high performance thermal module with dimple vortex generators. , 2010, , .		1
319	Liquid flow distribution in compact parallel flow heat exchangers. , 2011, , .		1
320	An optimized heat dissipation fin design applicable for natural convection augmentation (IMPACT) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 50
321	Performance of bare-tube bundle having small diameter tube: With and without partial bypass. International Communications in Heat and Mass Transfer, 2015, 67, 73-80.	5.6	1
322	Analytical and experimental verification of interleaved trapezoidal heat sink. , 2017, , .		1
323	On Effective Design and Operating Conditions of Desiccant Dehumidification System. Heat Transfer Engineering, 2018, 39, 598-607.	1.9	1
324	Experimental study on the energy harvesting of a cooktop via thermoelectric module assisted with phase change material. Energy Storage, 2019, 1, e55.	4.3	1

#	Article	IF	CITATIONS
325	A Criterion of Heat Transfer Deterioration for Supercritical Organic Fluids Flowing Upward and Its Heat Transfer Correlation. Energies, 2020, 13, 989.	3.1	1
326	Optimum Design of Air-Cooled Fin-and-Tube Heat Exchangers: Accounting for the Effect of Complex Circuiting. , 1999, , 163-184.		0
327	Influence of Inlet Configurations on the Refrigerant Distribution of a Dual Cold-Plate System. Heat Transfer Engineering, 2010, 31, 692-698.	1.9	0
328	Airside Performance of Wavy Fin-and-Tube Heat Exchangers: Data With Larger Diameter Tube. , 2010, , .		0
329	Analysis and Optimum for Air Cooling Thermal Module Using Dimple Vortex Generators. , 2010, , .		0
330	A Study on Heat Sink Performance Using V-Shaped Cannelure Structure Fin. , 2015, , .		0
331	Selected Papers from the 3rd International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control (IWHT2015). Heat Transfer Engineering, 2018, 39, 583-585.	1.9	Ο
332	Simulation and Analysis of the Supercritical ORC Heat Exchanger. , 2018, , .		0
333	A Comparative Study of the Oil-Free Centrifugal Water Chillers with the Flooded or Falling Film Evaporator—A Case Study. Energies, 2019, 12, 2548.	3.1	Ο
334	Experimental Investigation Regarding Rack Pressure Resistance on Cooling Performance of a Container Data Center. International Journal of Air-Conditioning and Refrigeration, 2019, 27, 1950038.	0.7	0
335	Numerical analysis of thermohydraulic behavior in a directional solidification furnace. Journal of Thermal Analysis and Calorimetry, 2020, 141, 483-494.	3.6	Ο
336	Numerical Simulation of the Flow and Heat Transfer Induced by Corona Discharge Coupling With Electrostatically Forced Vibration. Journal of Heat Transfer, 2021, 143, .	2.1	0
337	Frictional Pressure Drops of Two-Phase R-134A Flow in Horizontal and Vertical U-Type Wavy and Straight Tubes. , 2006, , .		Ο
338	Influence of Variable Heat Load on the Refrigerant Distribution of a Dual Cold-Plate System. , 2008, , .		0
339	Thermal Material for PCB Substrate and Its Measurement Method. Journal of Japan Institute of Electronics Packaging, 2019, 22, 205-208.	0.1	Ο
340	An analytically based method to estimate the effective thermal diffusivity of a heat pipe. Measurement Science and Technology, 2020, 32, 015902.	2.6	0
341	Role of nanofluids in microchannel heat sinks. , 2022, , 447-478.		0