
Brendon A Bradley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4526237/publications.pdf Version: 2024-02-01

RRENDON & RRADIEV

#	Article	IF	CITATIONS
1	A generalized conditional intensity measure approach and holistic groundâ€motion selection. Earthquake Engineering and Structural Dynamics, 2010, 39, 1321-1342.	2.5	187
2	A ground motion selection algorithm based on the generalized conditional intensity measure approach. Soil Dynamics and Earthquake Engineering, 2012, 40, 48-61.	1.9	146
3	Evaluation of the Liquefaction Potential Index for Assessing Liquefaction Hazard in Christchurch, New Zealand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, .	1.5	120
4	Geotechnical aspects of the 22 February 2011 Christchurch earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2011, 44, 205-226.	0.2	119
5	Geotechnical reconnaissance of the 2010 Darfield (Canterbury) earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2010, 43, 243-320.	0.2	108
6	Empirical building fragilities from observed damage in the 2009 South Pacific tsunami. Earth-Science Reviews, 2011, 107, 156-173.	4.0	106
7	Correlation of Significant Duration with Amplitude and Cumulative Intensity Measures and Its Use in Ground Motion Selection. Journal of Earthquake Engineering, 2011, 15, 809-832.	1.4	100
8	Select Liquefaction Case Histories from the 2010–2011 Canterbury Earthquake Sequence. Earthquake Spectra, 2014, 30, 131-153.	1.6	89
9	The 2010–2011 Canterbury Earthquake Sequence: Environmental effects, seismic triggering thresholds and geologic legacy. Tectonophysics, 2016, 672-673, 228-274.	0.9	87
10	Ground Motion and Seismic Source Aspects of the Canterbury Earthquake Sequence. Earthquake Spectra, 2014, 30, 1-15.	1.6	86
11	A critical examination of seismic response uncertainty analysis in earthquake engineering. Earthquake Engineering and Structural Dynamics, 2013, 42, 1717-1729.	2.5	82
12	Spatial and Spectral Interpolation of Groundâ€Motion Intensity Measure Observations. Bulletin of the Seismological Society of America, 2018, 108, 866-875.	1.1	81
13	Strong ground motion characteristics observed in the 4 September 2010 Darfield, New Zealand earthquake. Soil Dynamics and Earthquake Engineering, 2012, 42, 32-46.	1.9	78
14	Liquefaction effects and associated damages observed at the Wellington CentrePort from the 2016 Kaikoura earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50, 152-173.	0.2	74
15	Groundâ€Motion Observations from the 14 November 2016 <i>M</i> _w Â7.8 Kaikoura, New Zealand, Earthquake and Insights from Broadband Simulations. Seismological Research Letters, 2017, 88, 740-756.	0.8	67
16	Empirical Correlations between Peak Ground Velocity and Spectrum-Based Intensity Measures. Earthquake Spectra, 2012, 28, 17-35.	1.6	66
17	The seismic demand hazard and importance of the conditioning intensity measure. Earthquake Engineering and Structural Dynamics, 2012, 41, 1417-1437.	2.5	63
18	Development of an empirical correlation for predicting shear wave velocity of Christchurch soils from cone penetration test data. Soil Dynamics and Earthquake Engineering, 2015, 75, 66-75.	1.9	53

#	Article	IF	CITATIONS
19	Intensity Measure Correlations Observed in the NGA-West2 Database, and Dependence of Correlations on Rupture and Site Parameters. Earthquake Spectra, 2017, 33, 145-156.	1.6	53
20	Challenges in Predicting Seismic Site Response with 1D Analyses: Conclusions from 114 KiKâ€net Vertical Seismometer Arrays. Bulletin of the Seismological Society of America, 2018, 108, 2816-2838.	1.1	53
21	Seismic loss estimation for efficient decision making. Bulletin of the New Zealand Society for Earthquake Engineering, 2009, 42, 96-110.	0.2	53
22	Spreading-Induced Damage to Short-Span Bridges in Christchurch, New Zealand. Earthquake Spectra, 2014, 30, 57-83.	1.6	51
23	Empirical correlation of PGA, spectral accelerations and spectrum intensities from active shallow crustal earthquakes. Earthquake Engineering and Structural Dynamics, 2011, 40, 1707-1721.	2.5	47
24	Site-specific and spatially-distributed ground-motion intensity estimation in the 2010–2011 Canterbury earthquakes. Soil Dynamics and Earthquake Engineering, 2014, 61-62, 83-91.	1.9	45
25	Empirical Correlations between Cumulative Absolute Velocity and Amplitude-Based Ground Motion Intensity Measures. Earthquake Spectra, 2012, 28, 37-54.	1.6	44
26	Probabilistic seismic performance and loss assessment of a bridge–foundation–soil system. Soil Dynamics and Earthquake Engineering, 2010, 30, 395-411.	1.9	43
27	Ground motion selection for scenario ruptures using the generalised conditional intensity measure (GCIM) method. Earthquake Engineering and Structural Dynamics, 2015, 44, 1601-1621.	2.5	41
28	Empirical equations for the prediction of displacement spectrum intensity and its correlation with other intensity measures. Soil Dynamics and Earthquake Engineering, 2011, 31, 1182-1191.	1.9	40
29	A comparison of intensityâ€based demand distributions and the seismic demand hazard for seismic performance assessment. Earthquake Engineering and Structural Dynamics, 2013, 42, 2235-2253.	2.5	40
30	Ground motion selection for simulationâ€based seismic hazard and structural reliability assessment. Earthquake Engineering and Structural Dynamics, 2015, 44, 2321-2340.	2.5	39
31	Near-source strong ground motions observed in the 22 February 2011 Christchurch earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2011, 44, 181-194.	0.2	39
32	Epistemic Uncertainties in Component Fragility Functions. Earthquake Spectra, 2010, 26, 41-62.	1.6	38
33	Ground motion directionality in the 2010–2011 Canterbury earthquakes. Earthquake Engineering and Structural Dynamics, 2015, 44, 371-384.	2.5	36
34	Liquefactionâ€Induced Damage and CPT Characterization of the Reclamations at CentrePort, Wellington. Bulletin of the Seismological Society of America, 2018, 108, 1695-1708.	1.1	34
35	Accuracy of approximate methods of uncertainty propagation in seismic loss estimation. Structural Safety, 2010, 32, 13-24.	2.8	33
36	Effect of lattice-shaped ground improvement geometry on seismic response of liquefiable soil deposits via 3-D seismic effective stress analysis. Soil Dynamics and Earthquake Engineering, 2013, 48, 35-47.	1.9	32

#	Article	IF	CITATIONS
37	Systematic Ground Motion Observations in the Canterbury Earthquakes and Region-Specific Non-Ergodic Empirical Ground Motion Modeling. Earthquake Spectra, 2015, 31, 1735-1761.	1.6	32
38	A <i>V</i> _{<i>S</i>30} Map for New Zealand Based on Geologic and Terrain Proxy Variables and Field Measurements. Earthquake Spectra, 2019, 35, 1865-1897.	1.6	31
39	The effect of causal parameter bounds in PSHAâ€based ground motion selection. Earthquake Engineering and Structural Dynamics, 2016, 45, 1515-1535.	2.5	29
40	Design Seismic Demands from Seismic Response Analyses: A Probability-Based Approach. Earthquake Spectra, 2011, 27, 213-224.	1.6	28
41	Prediction of spatially distributed seismic demands in specific structures: Ground motion and structural response. Earthquake Engineering and Structural Dynamics, 2010, 39, 501-520.	2.5	27
42	Broadband Groundâ€Motion Simulation of the 2011 MwÂ6.2 Christchurch, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 2018, 108, 2130-2147.	1.1	25
43	Hybrid broadband ground motion simulation validation of small magnitude earthquakes in Canterbury, New Zealand. Earthquake Spectra, 2020, 36, 673-699.	1.6	25
44	The Mw 7.6 Dusky Sound earthquake of 2009. Bulletin of the New Zealand Society for Earthquake Engineering, 2010, 43, 24-40.	0.2	25
45	Assessment of liquefaction evaluation procedures and severity index frameworks at Christchurch strong motion stations. Soil Dynamics and Earthquake Engineering, 2015, 79, 335-346.	1.9	24
46	Strong ground motion observations of engineering interest from the 14 November 2016 Mw7.8 KaikÅura, New Zealand earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50, 85-93.	0.2	24
47	Ground motion and site effect observations in the wellington region from the 2016 Mw7.8 KaikÅura, New Zealand earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50, 94-105.	0.2	24
48	Influence of Site Effects on Observed Ground Motions in the Wellington Region from the MwÂ7.8 KaikÅura, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 2018, 108, 1722-1735.	1.1	23
49	Physical Hypotheses for Adjusting Coarse Profiles and Improving 1D Site-Response Estimation Assessed at 10 KiK-net Sites. Bulletin of the Seismological Society of America, 2020, 110, 1338-1358.	1.1	23
50	Lateral spreading displacements from the 2010 Darfield and 2011 Christchurch earthquakes. International Journal of Geotechnical Engineering, 2014, 8, 441-448.	1.1	22
51	Vs-Based Evaluation of Select Liquefaction Case Histories from the 2010–2011 Canterbury Earthquake Sequence. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2017, 143, 04017066.	1.5	22
52	Practiceâ€oriented estimation of the seismic demand hazard using ground motions at few intensity levels. Earthquake Engineering and Structural Dynamics, 2013, 42, 2167-2185.	2.5	21
53	Applicability of existing empirical shear wave velocity correlations to seismic cone penetration test data in Christchurch New Zealand. Soil Dynamics and Earthquake Engineering, 2015, 75, 76-86.	1.9	21
54	Ground motion simulations of great earthquakes on the Alpine Fault: effect of hypocentre location and comparison with empirical modelling. New Zealand Journal of Geology, and Geophysics, 2017, 60, 188-198.	1.0	20

#	Article	IF	CITATIONS
55	Project AF8: developing a coordinated, multi-agency response plan for a future great Alpine Fault earthquake. New Zealand Journal of Geology, and Geophysics, 2018, 61, 389-402.	1.0	19
56	Ground motions and damage observations in the Marlborough region from the 2013 Lake Grassmere earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2013, 46, 169-187.	0.2	19
57	Geotechnical aspects of the 2016 KaikÅura earthquake on the South Island of New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50, 117-141.	0.2	19
58	Period Dependence of Response Spectrum Damping Modification Factors due to Source- and Site-Specific Effects. Earthquake Spectra, 2015, 31, 745-759.	1.6	18
59	Strong ground motion characteristics observed in the 13 June 2011 M6.0 Christchurch, New Zealand earthquake. Soil Dynamics and Earthquake Engineering, 2016, 91, 23-38.	1.9	18
60	Response of instrumented buildings under the 2016 Kaikoura earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50, 237-252.	0.2	18
61	Seismic Hazard Epistemic Uncertainty in the San Francisco Bay Area and Its Role in Performance-Based Assessment. Earthquake Spectra, 2009, 25, 733-753.	1.6	15
62	Amplification of strong ground motions at Heathcote Valley during the 2010–2011 Canterbury earthquakes: Observation and 1D site response analysis. Soil Dynamics and Earthquake Engineering, 2017, 100, 345-356.	1.9	13
63	Methodology and computational implementation of a New Zealand Velocity Model (NZVM2.0) for broadband ground motion simulation. New Zealand Journal of Geology, and Geophysics, 2020, 63, 110-127.	1.0	12
64	Development of a regional <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si0015.gif" overflow="scroll"><mml:msub subscriptshift="65%"><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mi>s</mml:mi>w model and typical V profiles for Christchurch, New Zealand from CPT data and region-specific CPT-V correlation. Soil Dynamics and Earthquake Engineering, 2017, 95, 48-60.</mml:msub </mml:math>	nl:mm9>30<	/m .od: mn>
65	3D models of Quaternary-aged sedimentary successions within the Canterbury, New Zealand region. New Zealand Journal of Geology, and Geophysics, 2017, 60, 320-340.	1.0	10
66	A Neural Network for Automated Quality Screening of Ground Motion Records from Small Magnitude Earthquakes. Earthquake Spectra, 2019, 35, 1637-1661.	1.6	10
67	Development and Validation of Fragility Functions for Buried Pipelines Based on Canterbury Earthquake Sequence Data. Earthquake Spectra, 2019, 35, 1061-1086.	1.6	10
68	Benefits of site-specific hazard analyses for seismic design in New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, 2015, 48, 92-99.	0.2	10
69	Prediction of spatially distributed seismic demands in specific structures: Structural response to loss estimation. Earthquake Engineering and Structural Dynamics, 2010, 39, 591-613.	2.5	9
70	2D Geotechnical site-response analysis including soil heterogeneity and wave scattering. Earthquake Spectra, 2022, 38, 1124-1147.	1.6	9
71	Component correlations in structureâ€specific seismic loss estimation. Earthquake Engineering and Structural Dynamics, 2010, 39, 237-258.	2.5	8
72	A Decision-Support Algorithm for Post-Earthquake Water Services Recovery and Its Application to the 22 February 2011 Mw6.2 Christchurch Earthquake. Earthquake Spectra, 2019, 35, 1397-1420.	1.6	7

#	Article	IF	CITATIONS
73	Nonstationary spatial correlation in New Zealand strong groundâ€motion data. Earthquake Engineering and Structural Dynamics, 2021, 50, 3421-3440.	2.5	7
74	Wellington's earthquake resilience: Lessons from the 2016 KaikÅura earthquake. Earthquake Spectra, 2020, 36, 1448-1484.	1.6	6
75	Representative ground-motion ensembles for several major earthquake scenarios in New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, 2014, 47, 231-252.	0.2	6
76	Empirical Correlation for Estimating Shear-Wave Velocity from Cone Penetration Test Data for Banks Peninsula Loess Soils in Canterbury, New Zealand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	1.5	5
77	Ground motion simulation of hypothetical earthquakes in the upper North Island of New Zealand. New Zealand Journal of Geology, and Geophysics, 2021, 64, 570-588.	1.0	5
78	Soil profile characterisation of Christchurch Central Business District strong motion stations. Bulletin of the New Zealand Society for Earthquake Engineering, 2015, 48, 146-156.	0.2	5
79	Validating the sliding mechanics of office-type furniture using shake-table experiments. Bulletin of the New Zealand Society for Earthquake Engineering, 2018, 51, 1-11.	0.2	5
80	Challenges in the definition of input motions for forensic ground-response analysis in the near-source region. Earthquake Spectra, 2021, 37, 2562-2595.	1.6	4
81	Seismic performance criteria based on response history analysis. Bulletin of the New Zealand Society for Earthquake Engineering, 2014, 47, 224-228.	0.2	4
82	Ground motion input for nonlinear response history analysis. Bulletin of the New Zealand Society for Earthquake Engineering, 2019, 52, 119-133.	0.2	4
83	Comparison of a Christchurch-specific CPT-Vs correlation and Vs derived from surface wave analysis for strong motion station velocity characterisation. Bulletin of the New Zealand Society for Earthquake Engineering, 2015, 48, 81-91.	0.2	3
84	Discussion on â€~a framework for the evaluation of ground motion selection and modification procedures' by N. Simon Kwong, Anil K. Chopra, and Robin K. McGuire. Earthquake Engineering and Structural Dynamics, 2015, 44, 817-821.	2.5	2
85	Basin effects and limitations of 1D site response analysis from 2D numerical models of the Thorndon basin. Bulletin of the New Zealand Society for Earthquake Engineering, 2021, 54, 21-30.	0.2	2
86	In situ conditions affecting the ductility capacity of lightly reinforced concrete wall structures in the Canterbury earthquake sequence. Bulletin of the New Zealand Society for Earthquake Engineering, 2015, 48, 190-203.	0.2	2
87	Select Liquefaction Case Histories from the 2010â \in "2011 Canterbury Earthquake Sequence. , 0, .		1
88	Ground motion simulations of Hope fault earthquakes. Bulletin of the New Zealand Society for Earthquake Engineering, 2019, 52, 152-171.	0.2	1
89	Reply to "Comment on â€~Broadband Groundâ€Motion Simulation of the 2011 MwÂ6.2 Christchurch, New Zealand, Earthquake' by H. N. T. Razafindrakoto, B. A. Bradley, and R. W. Graves―by Guidotti etÂal Bulletin of the Seismological Society of America, 2019, 109, 2139-2139.	1.1	0
90	Re: Future direction of the NZSEE journal. Bulletin of the New Zealand Society for Earthquake Engineering, 2008, 41, 104.	0.2	0

#	Article	IF	CITATIONS
91	GMSimViz: Automated 3D Visualization of Ground Motion Simulation with Generic Mapping Tools (GMT). Journal of Open Source Software, 2019, 4, 808.	2.0	0