Munseok S Chae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4526128/publications.pdf

Version: 2024-02-01

26 papers 1,284 citations

20 h-index 552781 26 g-index

27 all docs

 $\begin{array}{c} 27 \\ \text{docs citations} \end{array}$

times ranked

27

1550 citing authors

#	Article	IF	CITATIONS
1	NaO.44MnO2/Polyimide Aqueous Na-ion Batteries for Large Energy Storage Applications. Frontiers in Energy Research, 2021, 8, .	2.3	8
2	Changes in the interfacial charge-transfer resistance of Mg metal electrodes, measured by dynamic electrochemical impedance spectroscopy. Electrochemistry Communications, 2021, 124, 106952.	4.7	21
3	High Performance Aqueous and Nonaqueous Ca-lon Cathodes Based on Fused-Ring Aromatic Carbonyl Compounds. ACS Energy Letters, 2021, 6, 2659-2665.	17.4	23
4	Layered Iron Vanadate as a High-Capacity Cathode Material for Nonaqueous Calcium-Ion Batteries. Batteries, 2021, 7, 54.	4.5	14
5	Multifold Electrochemical Protons and Zinc Ion Storage Behavior in Copper Vanadate Cathodes. ACS Applied Energy Materials, 2021, 4, 10197-10202.	5.1	4
6	An efficient and robust lanthanum strontium cobalt ferrite catalyst as a bifunctional oxygen electrode for reversible solid oxide cells. Journal of Materials Chemistry A, 2021, 9, 5507-5521.	10.3	21
7	Tunnelâ€Type Sodium Manganese Oxide Cathodes for Sodiumâ€lon Batteries. ChemElectroChem, 2021, 8, 798-811.	3.4	26
8	Anomalous Sodium Storage Behavior in Al/F Dualâ€Doped P2â€Type Sodium Manganese Oxide Cathode for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002205.	19.5	36
9	On the challenge of large energy storage by electrochemical devices. Electrochimica Acta, 2020, 354, 136771.	5. 2	62
10	Boosting Tunnel-Type Manganese Oxide Cathodes by Lithium Nitrate for Practical Aqueous Na-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10744-10751.	5.1	4
11	Vacancyâ€Driven High Rate Capabilities in Calciumâ€Doped Na _{0.4} MnO ₂ Cathodes for Aqueous Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002077.	19.5	37
12	Calcium Molybdenum Bronze as a Stable High-Capacity Cathode Material for Calcium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 5107-5112.	5.1	37
13	The Role of Surface Adsorbed Cl [–] Complexes in Rechargeable Magnesium Batteries. ACS Catalysis, 2020, 10, 7773-7784.	11.2	35
14	Doubleâ€Sheet Vanadium Oxide as a Cathode Material for Calciumâ€Ion Batteries. ChemNanoMat, 2020, 6, 1049-1053.	2.8	29
15	The Sodium Storage Mechanism in Tunnelâ€Type Na _{0.44} MnO ₂ Cathodes and the Way to Ensure Their Durable Operation. Advanced Energy Materials, 2020, 10, 2000564.	19.5	51
16	Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures. Journal of Materials Chemistry A, 2019, 7, 20558-20566.	10.3	47
17	Prototype System of Rocking-Chair Zn-Ion Battery Adopting Zinc Chevrel Phase Anode and Rhombohedral Zinc Hexacyanoferrate Cathode. Batteries, 2019, 5, 3.	4.5	56
18	Rhombohedral Potassium–Zinc Hexacyanoferrate as a Cathode Material for Nonaqueous Potassium-Ion Batteries. Inorganic Chemistry, 2019, 58, 3065-3072.	4.0	33

#	Article	IF	CITATIONS
19	Electrochemical Exchange Reaction Mechanism and the Role of Additive Water to Stabilize the Structure of VOPO ₄ â<2 H ₂ O as a Cathode Material for Potassium″on Batteries. ChemSusChem, 2019, 12, 1069-1075.	6.8	54
20	H ₂ V ₃ O ₈ as a High Energy Cathode Material for Nonaqueous Magnesium-Ion Batteries. Chemistry of Materials, 2018, 30, 7464-7472.	6.7	76
21	Ammonium Vanadium Bronze (NH ₄ V ₄ O ₁₀) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries. Chemistry of Materials, 2018, 30, 3690-3696.	6.7	119
22	Potassium nickel hexacyanoferrate as a high-voltage cathode material for nonaqueous magnesium-ion batteries. Journal of Power Sources, 2017, 363, 269-276.	7.8	49
23	Electrochemical lithium intercalation chemistry of condensed molybdenum metal cluster oxide: LiMo 4 O 6. Journal of Solid State Chemistry, 2017, 254, 90-95.	2.9	4
24	Unraveling the Magnesium-lon Intercalation Mechanism in Vanadium Pentoxide in a Wet Organic Electrolyte by Structural Determination. Inorganic Chemistry, 2017, 56, 7668-7678.	4.0	63
25	Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. Journal of Power Sources, 2017, 337, 204-211.	7.8	214
26	Electrochemical Zinc-Ion Intercalation Properties and Crystal Structures of ZnMo ₆ S ₈ and Zn ₂ Mo ₆ S ₈ Chevrel Phases in Aqueous Electrolytes. Inorganic Chemistry, 2016, 55, 3294-3301.	4.0	161