Brian Aguado

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4526075/brian-aguado-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

217	11,438 citations	57	100
papers		h-index	g-index
232	13,578 ext. citations	10.3	6.99
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
217	Genes that Escape X Chromosome Inactivation Modulate Sex Differences in Valve Myofibroblasts <i>Circulation</i> , 2022 ,	16.7	2
216	Masked Delivery of Allergen in Nanoparticles Safely Attenuates Anaphylactic Response in Murine Models of Peanut Allergy <i>Frontiers in Allergy</i> , 2022 , 3, 829605	О	0
215	Tissue geometry drives deterministic organoid patterning <i>Science</i> , 2022 , 375, eaaw9021	33.3	22
214	Network modeling predicts personalized gene expression and drug responses in valve myofibroblasts cultured with patient sera <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	2
213	Kinetic Analysis of Degradation in Thioester Cross-linked Hydrogels as a Function of Thiol Concentration, pKa, and Presentation. <i>Macromolecules</i> , 2022 , 55, 2123-2129	5.5	1
212	In Situ Super-Resolution Imaging of Organoids and Extracellular Matrix Interactions via Phototransfer by Allyl Sulfide Exchange-Expansion Microscopy (PhASE-ExM) <i>Advanced Materials</i> , 2022 , e2109252	24	1
211	Neutrophil and natural killer cell imbalances prevent muscle stem cell-mediated regeneration following murine volumetric muscle loss <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2111445119	11.5	1
210	Hydrogel cultures reveal Transient Receptor Potential Vanilloid 4 regulation of myofibroblast activation and proliferation in valvular interstitial cells <i>FASEB Journal</i> , 2022 , 36, e22306	0.9	1
209	Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance <i>Biomaterials</i> , 2022 , 283, 121457	15.6	О
208	Stress Relaxation and Composition of Hydrazone-Crosslinked Hybrid Biopolymer-Synthetic Hydrogels Determine Spreading and Secretory Properties of MSCs <i>Advanced Healthcare Materials</i> , 2022 , e2200393	10.1	1
207	Impact of Collagen Triple Helix Structure on Melanoma Cell Invadopodia Formation and Matrix Degradation upon BRAF Inhibitor Treatment. <i>Advanced Healthcare Materials</i> , 2021 , e2101592	10.1	
206	Implications of TGFIsignaling and CDK Inhibition for the Treatment of Breast Cancer. <i>Cancers</i> , 2021 , 13,	6.6	1
205	Mesenchymal stem cell-inspired microgel scaffolds to control macrophage polarization. <i>Bioengineering and Translational Medicine</i> , 2021 , 6, e10217	14.8	6
204	Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ mechanotransduction. <i>Science Advances</i> , 2021 , 7,	14.3	19
203	Mechanobiological Interactions between Dynamic Compressive Loading and Viscoelasticity on Chondrocytes in Hydrazone Covalent Adaptable Networks for Cartilage Tissue Engineering. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2002030	10.1	7
202	Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. <i>Nature Biomedical Engineering</i> , 2021 ,	19	18
201	IL-10 lentivirus-laden hydrogel tubes increase spinal progenitor survival and neuronal differentiation after spinal cord injury. <i>Biotechnology and Bioengineering</i> , 2021 , 118, 2609-2625	4.9	4

200	Photoclick Chemistry: A Bright Idea. <i>Chemical Reviews</i> , 2021 , 121, 6915-6990	68.1	37
199	Cardiac Fibroblasts Mediate a Sexually Dimorphic Fibrotic Response to EAdrenergic Stimulation. Journal of the American Heart Association, 2021 , 10, e018876	6	6
198	Impact of Release Kinetics on Efficacy of Locally Delivered Parathyroid Hormone for Bone Regeneration Applications. <i>Tissue Engineering - Part A</i> , 2021 , 27, 246-255	3.9	1
197	Lentiviral Interleukin-10 Gene Therapy Preserves Fine Motor Circuitry and Function After a Cervical Spinal Cord Injury in Male and Female Mice. <i>Neurotherapeutics</i> , 2021 , 18, 503-514	6.4	7
196	Collagen networks within 3D PEG hydrogels support valvular interstitial cell matrix mineralization. <i>Acta Biomaterialia</i> , 2021 , 119, 197-210	10.8	6
195	Disease-induced immunomodulation at biomaterial scaffolds detects early pancreatic cancer in a spontaneous model. <i>Biomaterials</i> , 2021 , 269, 120632	15.6	4
194	Tumor necrosis factor-promotes and exacerbates calcification in heart valve myofibroblast populations. <i>FASEB Journal</i> , 2021 , 35, e21382	0.9	3
193	Engineering the MSC Secretome: A Hydrogel Focused Approach. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001948	10.1	21
192	Cargo-free immunomodulatory nanoparticles combined with anti-PD-1 antibody for treating metastatic breast cancer. <i>Biomaterials</i> , 2021 , 269, 120666	15.6	8
191	3D printing of sacrificial thioester elastomers using digital light processing for templating 3D organoid structures in soft biomatrices. <i>Biofabrication</i> , 2021 , 13,	10.5	3
190	Restoring normal islet mass and function in type 1 diabetes through regenerative medicine and tissue engineering. <i>Lancet Diabetes and Endocrinology,the</i> , 2021 , 9, 708-724	18.1	3
189	Myoblast mechanotransduction and myotube morphology is dependent on BAG3 regulation of YAP and TAZ. <i>Biomaterials</i> , 2021 , 277, 121097	15.6	1
188	Matters of the heart: Cellular sex differences. <i>Journal of Molecular and Cellular Cardiology</i> , 2021 , 160, 42-55	5.8	10
187	Adrenergic Blockade Promotes Maintenance of Dormancy in Prostate Cancer Through Upregulation of GAS6. <i>Translational Oncology</i> , 2020 , 13, 100781	4.9	7
186	Porous Silicon Nanoparticles Embedded in Poly(lacticglycolic acid) Nanofiber Scaffolds Deliver Neurotrophic Payloads to Enhance Neuronal Growth. <i>Advanced Functional Materials</i> , 2020 , 30, 2002560	15.6	11
185	Engineered Niches to Analyze Mechanisms of Metastasis and Guide Precision Medicine. <i>Cancer Research</i> , 2020 , 80, 3786-3794	10.1	10
184	Towards systems tissue engineering: Elucidating the dynamics, spatial coordination, and individual cells driving emergent behaviors. <i>Biomaterials</i> , 2020 , 255, 120189	15.6	4
183	Bioorthogonal click chemistries enable simultaneous spatial patterning of multiple proteins to probe synergistic protein effects on fibroblast function. <i>Biomaterials</i> , 2020 , 255, 120205	15.6	13

182	The Effect of Thiol Structure on Allyl Sulfide Photodegradable Hydrogels and their Application as a Degradable Scaffold for Organoid Passaging. <i>Advanced Materials</i> , 2020 , 32, e1905366	24	26
181	Neutrophils preferentially phagocytose elongated particles-An opportunity for selective targeting in acute inflammatory diseases. <i>Science Advances</i> , 2020 , 6, eaba1474	14.3	33
180	Phototunable Viscoelasticity in Hydrogels Through Thioester Exchange. <i>Annals of Biomedical Engineering</i> , 2020 , 48, 2053-2063	4.7	11
179	Polycistronic Delivery of IL-10 and NT-3 Promotes Oligodendrocyte Myelination and Functional Recovery in a Mouse Spinal Cord Injury Model. <i>Tissue Engineering - Part A</i> , 2020 , 26, 672-682	3.9	14
178	Gliadin Nanoparticles Induce Immune Tolerance to Gliadin in Mouse Models of Celiac Disease. <i>Gastroenterology</i> , 2020 , 158, 1667-1681.e12	13.3	43
177	Ligands, Receptors, and Transcription Factors that Mediate Inter-Cellular and Intra-Cellular Communication during Ovarian Follicle Development. <i>Reproductive Sciences</i> , 2020 , 27, 690-703	3	7
176	Relaxation of Extracellular Matrix Forces Directs Crypt Formation and Architecture in Intestinal Organoids. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901214	10.1	34
175	Metastatic Conditioning of Myeloid Cells at a Subcutaneous Synthetic Niche Reflects Disease Progression and Predicts Therapeutic Outcomes. <i>Cancer Research</i> , 2020 , 80, 602-612	10.1	17
174	Thiol-ene Hydrogels for Local Delivery of PTH for Bone Regeneration in Critical Size defects. Journal of Orthopaedic Research, 2020 , 38, 536-544	3.8	6
173	Microporous scaffolds loaded with immunomodulatory lentivirus to study the contribution of immune cell populations to tumor cell recruitment in vivo. <i>Biotechnology and Bioengineering</i> , 2020 , 117, 210-222	4.9	6
172	Porous bio-click microgel scaffolds control hMSC interactions and promote their secretory properties. <i>Biomaterials</i> , 2020 , 232, 119725	15.6	20
171	Designing Microgels for Cell Culture and Controlled Assembly of Tissue Microenvironments. <i>Advanced Functional Materials</i> , 2020 , 30, 1907670	15.6	18
170	Cyclin E overexpression confers resistance to trastuzumab through noncanonical phosphorylation of SMAD3 in HER2+ breast cancer. <i>Cancer Biology and Therapy</i> , 2020 , 21, 994-1004	4.6	2
169	Modulating lung immune cells by pulmonary delivery of antigen-specific nanoparticles to treat autoimmune disease. <i>Science Advances</i> , 2020 , 6,	14.3	17
168	Engineered immunological niches to monitor disease activity and treatment efficacy in relapsing multiple sclerosis. <i>Nature Communications</i> , 2020 , 11, 3871	17.4	6
167	Regulation of adipose tissue inflammation and systemic metabolism in murine obesity by polymer implants loaded with lentiviral vectors encoding human interleukin-4. <i>Biotechnology and Bioengineering</i> , 2020 , 117, 3891-3901	4.9	2
166	Building a virtual community to support and celebrate the success of Latinx scientists. <i>Nature Reviews Materials</i> , 2020 , 1-3	73.3	0
165	Secreted Factors From Proinflammatory Macrophages Promote an Osteoblast-Like Phenotype in Valvular Interstitial Cells. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 2020 , 40, e296-e308	9.4	22

(2019-2020)

164	Acute Implantation of Aligned Hydrogel Tubes Supports Delayed Spinal Progenitor Implantation. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 5771-5784	5.5	9
163	Defining the Cardiac Fibroblast Secretome in a Fibrotic Microenvironment. <i>Journal of the American Heart Association</i> , 2020 , 9, e017025	6	18
162	Calcium Signaling Regulates Valvular Interstitial Cell Alignment and Myofibroblast Activation in Fast-Relaxing Boronate Hydrogels. <i>Macromolecular Bioscience</i> , 2020 , 20, e2000268	5.5	11
161	Integration of Islet/Beta-Cell Transplants with Host Tissue Using Biomaterial Platforms. <i>Endocrinology</i> , 2020 , 161,	4.8	2
160	Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an model of prenatal spina bifida repair. <i>Journal of Tissue Engineering</i> , 2020 , 11, 2041731420943833	7.5	2
159	Three-dimensional encapsulation of adult mouse cardiomyocytes in hydrogels with tunable stiffness. <i>Progress in Biophysics and Molecular Biology</i> , 2020 , 154, 71-79	4.7	16
158	High Frequency Spectral Ultrasound Imaging to Detect Metastasis in Implanted Biomaterial Scaffolds. <i>Annals of Biomedical Engineering</i> , 2020 , 48, 477-489	4.7	4
157	Design of biodegradable nanoparticles to modulate phenotypes of antigen-presenting cells for antigen-specific treatment of autoimmune disease. <i>Biomaterials</i> , 2019 , 222, 119432	15.6	34
156	Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	26
155	PEGAnthracene Hydrogels as an On-Demand Stiffening Matrix To Study Mechanobiology. <i>Angewandte Chemie</i> , 2019 , 131, 10017-10021	3.6	14
154	Dynamic genome-scale cell-specific metabolic models reveal novel inter-cellular and intra-cellular metabolic communications during ovarian follicle development. <i>BMC Bioinformatics</i> , 2019 , 20, 307	3.6	9
153	PEG-Anthracene Hydrogels as an On-Demand Stiffening Matrix To Study Mechanobiology. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9912-9916	16.4	50
152	Optimizing PLG nanoparticle-peptide delivery platforms for transplantation tolerance using an allogeneic skin transplant model. <i>Biomaterials</i> , 2019 , 210, 70-82	15.6	11
151	Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 11, 18671-18680	9.5	29
150	Biomaterial Scaffolds Recruit an Aggressive Population of Metastatic Tumor Cells. <i>Cancer Research</i> , 2019 , 79, 2042-2053	10.1	19
149	Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction. <i>Biomaterials</i> , 2019 , 223, 119430	15.6	35
148	Quantifying heart valve interstitial cell contractile state using highly tunable poly(ethylene glycol) hydrogels. <i>Acta Biomaterialia</i> , 2019 , 96, 354-367	10.8	13
147	Cargo-less nanoparticles program innate immune cell responses to toll-like receptor activation. <i>Biomaterials</i> , 2019 , 218, 119333	15.6	26

146	Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 14947-14954	11.5	42
145	Microporous scaffolds support assembly and differentiation of pancreatic progenitors into Etell clusters. <i>Acta Biomaterialia</i> , 2019 , 96, 111-122	10.8	17
144	PLG Bridge Implantation in Chronic SCI Promotes Axonal Elongation and Myelination. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 6679-6690	5.5	2
143	Precision health for breast cancer metastasis: biomaterial scaffolds as an engineered metastatic niche to define, study, and monitor metastatic progression. <i>Oncoscience</i> , 2019 , 6, 380-382	0.8	2
142	Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. <i>Journal of Controlled Release</i> , 2019 , 300, 185-196	11.7	42
141	Combinatorial lentiviral gene delivery of pro-oligodendrogenic factors for Improving Impelination of regenerating axons after spinal cord injury. <i>Biotechnology and Bioengineering</i> , 2019 , 116, 155-167	4.9	9
140	Hydrazone covalent adaptable networks modulate extracellular matrix deposition for cartilage tissue engineering. <i>Acta Biomaterialia</i> , 2019 , 83, 71-82	10.8	56
139	Localized immune tolerance from FasL-functionalized PLG scaffolds. <i>Biomaterials</i> , 2019 , 192, 271-281	15.6	13
138	Immunofunctional photodegradable poly(ethylene glycol) hydrogel surfaces for the capture and release of rare cells. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 174, 483-492	6	22
137	Aligned hydrogel tubes guide regeneration following spinal cord injury. <i>Acta Biomaterialia</i> , 2019 , 86, 312-322	10.8	49
136	Overcoming challenges in treating autoimmuntity: Development of tolerogenic immune-modifying nanoparticles. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2019 , 18, 282-291	6	46
135	Biomaterial Scaffolds as Pre-metastatic Niche Mimics Systemically Alter the Primary Tumor and Tumor Microenvironment. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1700903	10.1	20
134	Microporous Polymer Scaffolds for the Transplantation of Embryonic Stem Cell Derived Pancreatic Progenitors to a Clinically Translatable Site for the Treatment of Type I Diabetes. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 1770-1778	5.5	20
133	Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. <i>Biomaterials</i> , 2018 , 178, 496-503	15.6	90
132	Engineering precision biomaterials for personalized medicine. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	99
131	Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels. <i>Bioconjugate Chemistry</i> , 2018 , 29, 905-913	6.3	94
130	Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. <i>Journal of Autoimmunity</i> , 2018 , 89, 112-124	15.5	56
129	Local Immunomodulation with Anti-inflammatory Cytokine-Encoding Lentivirus Enhances Functional Recovery after Spinal Cord Injury. <i>Molecular Therapy</i> , 2018 , 26, 1756-1770	11.7	31

(2018-2018)

128	Retrievable hydrogels for ovarian follicle transplantation and oocyte collection. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 2075-2086	4.9	25
127	Synthesis of microgel sensors for spatial and temporal monitoring of protease activity. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 378-387	5.5	21
126	Embryonic stem cell secreted factors decrease invasiveness of triple-negative breast cancer cells through regulome modulation. <i>Cancer Biology and Therapy</i> , 2018 , 19, 271-281	4.6	4
125	Partial flocculation for spray drying of spherical mixed metal oxide particles. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 4452-4457	3.8	5
124	Dynamic microRNA activity identifies therapeutic targets in trastuzumab-resistant HER2 breast cancer. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 2613-2623	4.9	9
123	A Reversible and Repeatable Thiol-Ene Bioconjugation for Dynamic Patterning of Signaling Proteins in Hydrogels. <i>ACS Central Science</i> , 2018 , 4, 909-916	16.8	95
122	Evaluation of biomaterial scaffold delivery of IL-33 as a localized immunomodulatory agent to support cell transplantation in adipose tissue. <i>Journal of Immunology and Regenerative Medicine</i> , 2018 , 1, 1-12	2.8	17
121	It's All in the Delivery: Designing Hydrogels for Cell and Non-viral Gene Therapies. <i>Molecular Therapy</i> , 2018 , 26, 2087-2106	11.7	48
120	Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 2356-2364	4.9	14
119	Pre-Metastatic Niche: Biomaterial Scaffolds as Pre-metastatic Niche Mimics Systemically Alter the Primary Tumor and Tumor Microenvironment (Adv. Healthcare Mater. 10/2018). <i>Advanced Healthcare Materials</i> , 2018 , 7, 1870040	10.1	
118	Feasibility study on mouse live imaging after spinal cord injury and poly(lactide-co-glycolide) bridge implantation. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1-6	3.5	4
117	Conjugation of Transforming Growth Factor Beta to Antigen-Loaded Poly(lactide- co-glycolide) Nanoparticles Enhances Efficiency of Antigen-Specific Tolerance. <i>Bioconjugate Chemistry</i> , 2018 , 29, 813-	-823	43
116	Epithelial-mesenchymal crosstalk influences cellular behavior in a 3D alveolus-fibroblast model system. <i>Biomaterials</i> , 2018 , 155, 124-134	15.6	25
115	Reducing inflammation through delivery of lentivirus encoding for anti-inflammatory cytokines attenuates neuropathic pain after spinal cord injury. <i>Journal of Controlled Release</i> , 2018 , 290, 88-101	11.7	32
114	Synergy of Paracrine Signaling During Early-Stage Mouse Ovarian Follicle Development. <i>Cellular and Molecular Bioengineering</i> , 2018 , 11, 435-450	3.9	8
113	Spinal Progenitor-Laden Bridges Support Earlier Axon Regeneration Following Spinal Cord Injury. <i>Tissue Engineering - Part A</i> , 2018 , 24, 1588-1602	3.9	11
112	Secondary Photocrosslinking of Click Hydrogels To Probe Myoblast Mechanotransduction in Three Dimensions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11585-11588	16.4	47
111	Design of Large-Scale Reporter Construct Arrays for Dynamic, Live Cell Systems Biology. <i>ACS Synthetic Biology</i> , 2018 , 7, 2063-2073	5.7	3

110	Amplified Photodegradation of Cell-Laden Hydrogels via an Addition-Fragmentation Chain Transfer Reaction. <i>Advanced Materials</i> , 2017 , 29, 1605001	24	68
109	Peptide-Conjugated Nanoparticles Reduce Positive Co-stimulatory Expression and T Cell Activity to Induce Tolerance. <i>Molecular Therapy</i> , 2017 , 25, 1676-1685	11.7	57
108	In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. <i>Advanced Drug Delivery Reviews</i> , 2017 , 114, 240-255	18.5	70
107	Clickable Microgel Scaffolds as Platforms for 3D Cell Encapsulation. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700254	10.1	53
106	Phosphate regulates chondrogenesis in a biphasic and maturation-dependent manner. <i>Differentiation</i> , 2017 , 95, 54-62	3.5	4
105	Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. <i>Science Advances</i> , 2017 , 3, e1700184	14.3	95
104	Engineering the pre-metastatic niche. <i>Nature Biomedical Engineering</i> , 2017 , 1,	19	73
103	Systems analysis of dynamic transcription factor activity identifies targets for treatment in Olaparib resistant cancer cells. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 2085-2095	4.9	10
102	Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization. <i>Biomaterials</i> , 2017 , 131, 131-144	15.6	53
101	Advances in islet encapsulation technologies. <i>Nature Reviews Drug Discovery</i> , 2017 , 16, 338-350	64.1	214
100	PEG-peptide hydrogels reveal differential effects of matrix microenvironmental cues on melanoma drug sensitivity. <i>Integrative Biology (United Kingdom)</i> , 2017 , 9, 76-87	3.7	21
99	Reproducible Dendronized PEG Hydrogels via SPAAC Cross-Linking. <i>Biomacromolecules</i> , 2017 , 18, 4054-	4059	27
98	Injectable Carbon Nanotube-Functionalized Reverse Thermal Gel Promotes Cardiomyocytes Survival and Maturation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 31645-31656	9.5	39
97	Cell Culture: Clickable Microgel Scaffolds as Platforms for 3D Cell Encapsulation (Adv. Healthcare Mater. 15/2017). <i>Advanced Healthcare Materials</i> , 2017 , 6,	10.1	1
96	Hydrogels with Reversible Mechanics to Probe Dynamic Cell Microenvironments. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12132-12136	16.4	165
95	Hydrogels with Reversible Mechanics to Probe Dynamic Cell Microenvironments. <i>Angewandte Chemie</i> , 2017 , 129, 12300-12304	3.6	15
94	An antigen-encapsulating nanoparticle platform for T1/17 immune tolerance therapy. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2017 , 13, 191-200	6	66
93	Controlled Delivery of Single or Multiple Antigens in Tolerogenic Nanoparticles Using Peptide-Polymer Bioconjugates. <i>Molecular Therapy</i> , 2017 , 25, 1655-1664	11.7	53

(2016-2016)

92	Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. <i>Biomaterials</i> , 2016 , 74, 31-41	15.6	68
91	Role of cell-matrix interactions on VIC phenotype and tissue deposition in 3D PEG hydrogels. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2016 , 10, E443-E453	4.4	37
90	Enhanced Survival with Implantable Scaffolds That Capture Metastatic Breast Cancer Cells In Vivo. <i>Cancer Research</i> , 2016 , 76, 5209-18	10.1	68
89	Spatially patterned matrix elasticity directs stem cell fate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E4439-45	11.5	138
88	The design of reversible hydrogels to capture extracellular matrix dynamics. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	406
87	Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels. <i>BMC</i> Musculoskeletal Disorders, 2016 , 17, 245	2.8	10
86	Enhanced User-Control of Small Molecule Drug Release from a Poly(ethylene glycol) Hydrogel via Azobenzene/Cyclodextrin Complex Tethers. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 1035-1039	7.3	25
85	Plakophilin-2 loss promotes TGF-II/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. <i>Journal of Cell Biology</i> , 2016 , 212, 425-38	7.3	60
84	Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche. <i>Acta Biomaterialia</i> , 2016 , 33, 13-24	10.8	48
83	Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. <i>Biomaterials</i> , 2016 , 80, 11-19	15.6	76
82	Semi-automated counting of axon regeneration in poly(lactide co-glycolide) spinal cord bridges. <i>Journal of Neuroscience Methods</i> , 2016 , 263, 15-22	3	12
81	Photoregulated Hydrazone-Based Hydrogel Formation for Biochemically Patterning 3D Cellular Microenvironments. <i>ACS Macro Letters</i> , 2016 , 5, 19-23	6.6	43
80	Combined, Independent Small Molecule Release and Shape Memory via Nanogel-Coated Thiourethane Polymer Networks. <i>Polymer Chemistry</i> , 2016 , 7, 816-825	4.9	13
79	Tolerance induction using nanoparticles bearing HY peptides in bone marrow transplantation. <i>Biomaterials</i> , 2016 , 76, 1-10	15.6	37
78	Mold-casted non-degradable, islet macro-encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 2485-95	4.9	17
77	Three-Dimensional High-Throughput Cell Encapsulation Platform to Study Changes in Cell-Matrix Interactions. <i>ACS Applied Materials & Discrete States and S</i>	9.5	35
76	Immune Tolerance for Autoimmune Disease and Cell Transplantation. <i>Annual Review of Biomedical Engineering</i> , 2016 , 18, 181-205	12	53
75	Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5059-64	11.5	61

74	Tissue Engineering Approaches to Modulate the Inflammatory Milieu following Spinal Cord Injury. <i>Cells Tissues Organs</i> , 2016 , 202, 52-66	2.1	29
73	Poly(lactide-co-glycolide) microspheres for MRI-monitored delivery of sorafenib in a rabbit VX2 model. <i>Biomaterials</i> , 2015 , 61, 299-306	15.6	34
72	Size-specific follicle selection improves mouse oocyte reproductive outcomes. <i>Reproduction</i> , 2015 , 150, 183-92	3.8	41
71	Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function. <i>Biomaterials</i> , 2015 , 65, 1-12	15.6	49
70	Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E3757-64	11.5	121
69	Harnessing nanoparticles for immune modulation. <i>Trends in Immunology</i> , 2015 , 36, 419-27	14.4	148
68	Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. <i>Journal of Controlled Release</i> , 2015 , 204, 1-10	11.7	19
67	Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 5366-71	11.5	44
66	Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. <i>Clinical Immunology</i> , 2015 , 160, 14-23	9	21
65	Engineering the ovarian cycle using in vitro follicle culture. <i>Human Reproduction</i> , 2015 , 30, 1386-95	5.7	64
64	Controlled release strategies for modulating immune responses to promote tissue regeneration. Journal of Controlled Release, 2015 , 219, 155-166	11.7	25
63	A Biosynthetic Scaffold that Facilitates Chondrocyte-Mediated Degradation and Promotes Articular Cartilage Extracellular Matrix Deposition. <i>Regenerative Engineering and Translational Medicine</i> , 2015 , 1, 11-21	2.4	23
62	Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels. Journal of Controlled Release, 2015 , 219, 95-106	11.7	87
61	In vivo capture and label-free detection of early metastatic cells. <i>Nature Communications</i> , 2015 , 6, 8094	17.4	100
60	Transcriptional profiles of valvular interstitial cells cultured on tissue culture polystyrene, on 2D hydrogels, or within 3D hydrogels. <i>Data in Brief</i> , 2015 , 5, 959-62	1.2	2
59	A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. <i>Scientific Reports</i> , 2015 , 5, 17814	4.9	37
58	In vitro follicle growth supports human oocyte meiotic maturation. Scientific Reports, 2015, 5, 17323	4.9	141
57	Secretome identification of immune cell factors mediating metastatic cell homing. <i>Scientific Reports</i> , 2015 , 5, 17566	4.9	19

(2014-2015)

56	Progress in material design for biomedical applications. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 14444-51	11.5	174
55	Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. <i>Biomaterials</i> , 2015 , 49, 47-56	15.6	148
54	Multi-modal magnetic resonance elastography for noninvasive assessment of ovarian tissue rigidity in vivo. <i>Acta Biomaterialia</i> , 2015 , 13, 295-300	10.8	32
53	Mechanical memory and dosing influence stem cell fate. <i>Nature Materials</i> , 2014 , 13, 645-52	27	727
52	Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. <i>Advanced Materials</i> , 2014 , 26, 865-72	24	265
51	Modulation of matrix elasticity with PEG hydrogels to study melanoma drug responsiveness. <i>Biomaterials</i> , 2014 , 35, 4310-8	15.6	52
50	Sonic hedgehog and neurotrophin-3 increase oligodendrocyte numbers and myelination after spinal cord injury. <i>Integrative Biology (United Kingdom)</i> , 2014 , 6, 694-705	3.7	55
49	A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. <i>Biomaterials Science</i> , 2014 , 2, 1024-1034	7.4	59
48	Coumarin-Based Photodegradable Hydrogel: Design, Synthesis, Gelation, and Degradation Kinetics <i>ACS Macro Letters</i> , 2014 , 3, 515-519	6.6	82
47	Heparin-chitosan nanoparticle functionalization of porous poly(ethylene glycol) hydrogels for localized lentivirus delivery of angiogenic factors. <i>Biomaterials</i> , 2014 , 35, 8687-93	15.6	36
46	Nanoparticle delivery of donor antigens for transplant tolerance in allogeneic islet transplantation. <i>Biomaterials</i> , 2014 , 35, 8887-8894	15.6	69
45	Roles of transforming growth factor- 1 and OB-cadherin in porcine cardiac valve myofibroblast differentiation. <i>FASEB Journal</i> , 2014 , 28, 4551-62	0.9	29
44	Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks. <i>Biomacromolecules</i> , 2014 , 15, 2808-16	6.9	74
43	Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression. <i>Biomaterials</i> , 2014 , 35, 2024-31	15.6	60
42	Cryotemplation for the Rapid Fabrication of Porous, Patternable Photopolymerized Hydrogels. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4521-4530	7.3	9
41	Poly(lactide-co-glycolide) microspheres for MRI-monitored transcatheter delivery of sorafenib to liver tumors. <i>Journal of Controlled Release</i> , 2014 , 184, 10-7	11.7	49
40	Osteogenic differentiation of human mesenchymal stem cells on 5 integrin binding peptide hydrogels is dependent on substrate elasticity. <i>Biomaterials Science</i> , 2014 , 2, 352-361	7.4	47
39	Quantification of particle-conjugated or particle-encapsulated peptides on interfering reagent backgrounds. <i>BioTechniques</i> , 2014 , 57, 39-44	2.5	13

38	Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices. <i>Reproduction, Fertility and Development</i> , 2014 , 26, 915-30	1.8	37
37	Cardiac valve cells and their microenvironmentinsights from in vitro studies. <i>Nature Reviews Cardiology</i> , 2014 , 11, 715-27	14.8	62
36	Development of a Maleimide Amino Acid for Use as a Tool for Peptide Conjugation and Modification. <i>International Journal of Peptide Research and Therapeutics</i> , 2013 , 19, 265-274	2.1	3
35	Mechanical Properties and Degradation of Chain and Step Polymerized Photodegradable Hydrogels. <i>Macromolecules</i> , 2013 , 46,	5.5	116
34	A Diels-Alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells. <i>Biomaterials</i> , 2013 , 34, 4150-4158	15.6	60
33	Monitoring degradation of matrix metalloproteinases-cleavable PEG hydrogels via multiple particle tracking microrheology. <i>Soft Matter</i> , 2013 , 9, 1570-1579	3.6	52
32	Biomaterial Scaffolds for Controlled, Localized Gene Delivery of Regenerative Factors. <i>Advances in Wound Care</i> , 2013 , 2, 100-106	4.8	26
31	Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 19336-41	11.5	117
30	Modeling Controlled Photodegradation in Optically Thick Hydrogels. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 1899-1911	2.5	27
29	Wavelength-Controlled Photocleavage for the Orthogonal and Sequential Release of Multiple Proteins. <i>Angewandte Chemie</i> , 2013 , 125, 14048-14052	3.6	14
28	A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype. <i>PLoS ONE</i> , 2013 , 8, e81689	3.7	24
27	3D Photofixation Lithography in Diels-Alder Networks. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 2092-6	4.8	51
26	Small peptide functionalized thiol-ene hydrogels as culture substrates for understanding valvular interstitial cell activation and de novo tissue deposition. <i>Acta Biomaterialia</i> , 2012 , 8, 3201-9	10.8	78
25	An Instrumented Bioreactor for Mechanical Stimulation and Real-Time, Nondestructive Evaluation of Engineered Cartilage Tissue. <i>Journal of Medical Devices, Transactions of the ASME</i> , 2012 , 6,	1.3	8
24	Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. <i>PLoS ONE</i> , 2012 , 7, e39969	3.7	126
23	Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. <i>Nature Chemistry</i> , 2011 , 3, 925-31	17.6	528
22	Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. <i>Nature Chemistry</i> , 2011 , 3, 256-59	17.6	316
21	Reaction Rates and Mechanisms for Radical, Photoinitated Addition of Thiols to Alkynes, and Implications for Thiol\(\text{Macromolecules}, \textbf{2010}, 43, 4113-41	1595	138

(2001-2010)

20	In situ elasticity modulation with dynamic substrates to direct cell phenotype. <i>Biomaterials</i> , 2010 , 31, 1-8	15.6	346
19	A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization. <i>Advanced Materials</i> , 2009 , 21, 5005-5010	24	478
18	Mixed Mode ThiolAcrylate Photopolymerizations for the Synthesis of PEGPeptide Hydrogels. <i>Macromolecules</i> , 2008 , 41, 6019-6026	5.5	149
17	Multifunctional Pancreatic Islet Encapsulation Barriers Achieved via Multilayer PEG Hydrogels. <i>Cell Transplantation</i> , 2007 , 16, 1049-1057	4	48
16	Ultrathin gradient films using thiol-ene polymerizations. Journal of Polymer Science Part A, 2006, 44, 70	2 7. ₹03	39 ₇₄
15	Integrated surface modification of fully polymeric microfluidic devices using living radical photopolymerization chemistry. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 1404-1413	2.5	24
14	Living radical photopolymerization induced grafting on thiolane based substrates. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 2134-2144	2.5	61
13	Modular design of non-viral vectors with bioactive components. <i>Trends in Biotechnology</i> , 2004 , 22, 429-	31 5.1	7
12	Synthesis and Characterization of Photopolymerized Multifunctional Hydrogels: Water-Soluble Poly(Vinyl Alcohol) and Chondroitin Sulfate Macromers for Chondrocyte Encapsulation. <i>Macromolecules</i> , 2004 , 37, 6726-6733	5.5	157
11	A Methacrylated Photoiniferter as a Chemical Basis for Microlithography: Micropatterning Based on Photografting Polymerization. <i>Macromolecules</i> , 2003 , 36, 6739-6745	5.5	59
10	Synthesis of a novel methacrylic monomer iniferter and its application in surface photografting on crosslinked polymer substrates. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 1885-1891	2.5	54
9	Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. <i>Journal of Biomedical Materials Research Part B</i> , 2001 , 57, 217-23		245
8	Synthesis and characterization of tetrafunctional lactic acid oligomers: A potential in situ forming degradable orthopaedic biomaterial. <i>Journal of Polymer Science Part A</i> , 2001 , 39, 683-692	2.5	61
7	Predicting Controlled-Release Behavior of Degradable PLA-b-PEG-b-PLA Hydrogels. <i>Macromolecules</i> , 2001 , 34, 4630-4635	5.5	168
6	Materials for Non-Viral Gene Delivery. Annual Review of Materials Research, 2001, 31, 25-46	12.8	99
5	A Generalized Bulk-Degradation Model for Hydrogel Networks Formed from Multivinyl Cross-linking Molecules. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 5131-5138	3.4	61
4	A Statistical Kinetic Model for the Bulk Degradation of PLA-b-PEG-b-PLA Hydrogel Networks: Incorporating Network Non-Idealities. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 8069-8076	3.4	94
3	Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration 2001 , 57, 217		1

Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Engineering, **2000**, 6, 605-17

193

Controlled Degradation of Cast and 3-D Printed Photocurable Thioester Networks via ThiolThioester Exchange. *Macromolecules*,

5.5 3