Tommaso Leonardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4525706/publications.pdf

Version: 2024-02-01

448610 620720 3,331 27 19 26 citations h-index g-index papers 31 31 31 7199 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanopore ReCappable sequencing maps SARS-CoV-2 5′ capping sites and provides new insights into the structure of sgRNAs. Nucleic Acids Research, 2022, 50, 3475-3489.	6.5	12
2	Nanopore RNA Sequencing Analysis. Methods in Molecular Biology, 2021, 2284, 569-578.	0.4	6
3	Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biology, 2021, 19, e3001166.	2.6	95
4	Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Molecular Cell, 2021, 81, 2793-2807.e8.	4.5	18
5	Computational methods for RNA modification detection from nanopore direct RNA sequencing data. RNA Biology, 2021, 18, 31-40.	1.5	48
6	RNA modifications detection by comparative Nanopore direct RNA sequencing. Nature Communications, 2021, 12, 7198.	5.8	163
7	Direct RNA Sequencing for the Study of Synthesis, Processing, and Degradation of Modified Transcripts. Frontiers in Genetics, 2020, 11, 394.	1.1	11
8	SUMOylation promotes survival and integration of neural stem cell grafts in ischemic stroke. EBioMedicine, 2019, 42, 214-224.	2.7	33
9	Bedparse: feature extraction from BED files. Journal of Open Source Software, 2019, 4, 1228.	2.0	7
10	pycoQC, interactive quality control for Oxford Nanopore Sequencing. Journal of Open Source Software, 2019, 4, 1236.	2.0	121
11	Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell, 2018, 22, 355-368.e13.	5.2	216
12	Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biology, 2018, 19, 32.	3.8	114
13	Transposonâ€driven transcription is a conserved feature of vertebrate spermatogenesis and transcript evolution. EMBO Reports, 2017, 18, 1231-1247.	2.0	34
14	Interfacing Polymers and Tissues: Quantitative Local Assessment of the Foreign Body Reaction of Mononuclear Phagocytes to Polymeric Materials. Advanced Biology, 2017, 1, e1700021.	3.0	2
15	A novel community driven software for functional enrichment analysis of extracellular vesicles data. Journal of Extracellular Vesicles, 2017, 6, 1321455.	5.5	314
16	Extracellular vesicles are independent metabolic units with asparaginase activity. Nature Chemical Biology, 2017, 13, 951-955.	3.9	107
17	Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. International Journal of Molecular Sciences, 2016, 17, 171.	1.8	231
18	Improved definition of the mouse transcriptome via targeted RNA sequencing. Genome Research, 2016, 26, 705-716.	2.4	33

#	Article	IF	CITATIONS
19	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	5.5	1,020
20	Acellular approaches for regenerative medicine: on the verge of clinical trials with extracellular membrane vesicles?. Stem Cell Research and Therapy, 2015, 6, 227.	2.4	50
21	Quantitative gene profiling of long noncoding RNAs with targeted RNA sequencing. Nature Methods, 2015, 12, 339-342.	9.0	155
22	Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology, 2015, 16, 147-185.	2.0	57
23	Extracellular Vesicles from Neural Stem Cells Transfer IFN- \hat{I}^3 via Ifngr1 to Activate Stat1 Signaling in Target Cells. Molecular Cell, 2014, 56, 609.	4.5	3
24	Extracellular Vesicles from Neural Stem Cells Transfer IFN- \hat{l}^3 via Ifngr1 to Activate Stat1 Signaling in Target Cells. Molecular Cell, 2014, 56, 193-204.	4.5	258
25	ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. Journal of Extracellular Vesicles, 2013, 2, .	5.5	126
26	Extracellular Membrane Vesicles and Immune Regulation in the Brain. Frontiers in Physiology, 2012, 3, 117.	1.3	45
27	Group I metabotropic glutamate receptor signaling regulates the release of BDNF and LIF by neural stem cells. Matters, 0 , , .	1.0	0