
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4525617/publications.pdf Version: 2024-02-01

AMD M RACHER

#	Article	IF	CITATIONS
1	PN Code Acquisition in DS-CDMA Wireless Systems Using Smart Antenna and S-CFAR Processor. IEEE Access, 2022, 10, 6720-6736.	4.2	1
2	Machine Learning Based Low-Cost Optical Performance Monitoring in Mode Division Multiplexed Optical Networks. Photonics, 2022, 9, 73.	2.0	5
3	Performance Investigation of Modulation Format Identification in Super-Channel Optical Networks. IEEE Photonics Journal, 2022, 14, 1-10.	2.0	7
4	Structured Light Transmission under Free Space Jamming: An Enhanced Mode Identification and Signal-to-Jamming Ratio Estimation Using Machine Learning. Photonics, 2022, 9, 200.	2.0	1
5	Sagnac Loop Based Sensing System for Intrusion Localization Using Machine Learning. Photonics, 2022, 9, 275.	2.0	8
6	Machine Learning-Based Optical Performance Monitoring for Super-Channel Optical Networks. Photonics, 2022, 9, 299.	2.0	1
7	Reconfigurable photonics-based millimeter wave signal aggregation for non-orthogonal multiple access. Optics Express, 2022, 30, 16812.	3.4	2
8	Raised Cosine Multicore Fibers For High-Density Space Division Multiplexing (H-DSDM) Systems. , 2022, ,		0
9	Optical Performance Monitoring in Mode Division Multiplexed Optical Networks. Journal of Lightwave Technology, 2021, 39, 491-504.	4.6	23
10	Free space optic channel monitoring using machine learning. Optics Express, 2021, 29, 10967.	3.4	22
11	ML-Based Identification of Structured Light Schemes under Free Space Jamming Threats for Secure FSO-Based Applications. Photonics, 2021, 8, 129.	2.0	3
12	Extended L-Band InAs/InP Quantum-Dash Laser in Millimeter-Wave Applications. Photonics, 2021, 8, 167.	2.0	4
13	Performance of Injection-Locked Quantum-Dash MMW Source Under Clear and Dusty Weather Conditions. IEEE Photonics Journal, 2021, 13, 1-9.	2.0	3
14	2 Gbit/s QPSK Wireless Transmission System with Injection-locked Quantum-dash Laser 28 GHz MMW Source at 1610 nm. , 2021, , .		1
15	Hybrid 28ÂGHz MMW over fiber-wireless QPSK transmission system based on mid L-band external injection-locked quantum-dash laser comb source. Optical Fiber Technology, 2021, 64, 102553.	2.7	4
16	Bidirectional MMWoF-wireless convergence system based on a 1610â€nm L-band quantum-dash laser. Optics Express, 2021, 29, 27493.	3.4	6
17	Demonstration of MMW over Fiber-FSO-Wireless 5G QPSK Transmission in Mid L-band Wavelength Region. , 2021, , .		2
18	30 GHz MMW Generation and QPSK Transmission Employing L-band Quantum-dash Laser. , 2021, , .		0

#	Article	IF	CITATIONS
19	Retrofitting FSO Systems in Existing RF Infrastructure: A Non-Zero-Sum Game Technology. IEEE Open Journal of the Communications Society, 2021, 2, 2597-2615.	6.9	14
20	Self-injection Locked Quantum-dash Laser Source in Millimeter-wave-over-fiber 4 Gbits/s QPSK Transmission. , 2021, , .		0
21	Investigation of InAs/InP Quantum-Dash Laser as a Source in 28 GHz MMW Wireless QPSK Transmission. , 2021, , .		0
22	Photonics-based multi-band/multi-mode radar signal generation. Photonic Network Communications, 2020, 39, 91-101.	2.7	7
23	Efficient Classification of Optical Modulation Formats Based on Singular Value Decomposition and Radon Transformation. Journal of Lightwave Technology, 2020, 38, 619-631.	4.6	15
24	Millimeter wave switching for single carrier and aggregated filter bank multi-carrier signals in radio over fiber networks. Optical Fiber Technology, 2020, 60, 102335.	2.7	2
25	Injection-Locked Quantum-Dash Laser in Far L-Band 192 Gbit/s DWDM Transmission. IEEE Photonics Journal, 2020, 12, 1-11.	2.0	8
26	PAPR Reduction in UFMC for 5G Cellular Systems. Electronics (Switzerland), 2020, 9, 1404.	3.1	15
27	Machine Learning Techniques for Optical Performance Monitoring and Modulation Format Identification: A Survey. IEEE Communications Surveys and Tutorials, 2020, 22, 2839-2882.	39.4	70
28	K-Band Centralized Cost-Effective All-Optical Sensing Signal Distribution Network. IEEE Photonics Journal, 2020, 12, 1-10.	2.0	1
29	Electro-absorption and Electro-optic Characterization of L-Band InAs/InP Quantum-dash Waveguide. IEEE Photonics Journal, 2020, 12, 1-10.	2.0	3
30	Modulation format identification of optical signals: an approach based on singular value decomposition of Stokes space projections. Applied Optics, 2020, 59, 5989.	1.8	11
31	Identifying structured light modes in a desert environment using machine learning algorithms. Optics Express, 2020, 28, 9753.	3.4	25
32	Wireless Transmission of Millimeter Waves Generated by L-band InAs/InP Quantum-dash Laser. , 2020, , .		4
33	QPSK Modulation Effects on the RF Characteristics of Quantum-dash Laser Based WDM System. , 2020, ,		0
34	Three-channel Multiplexed Communication over Mid L-band InAs/InP Quantum Dash Laser. , 2020, , .		1
35	Hybrid dual-injection locked 1610Ânm quantum-dash laser for MMW and THz applications. Optics Communications, 2019, 452, 355-359.	2.1	8
36	An Investigation of LPI Radar Waveforms Classification in RoF Channels. IEEE Access, 2019, 7, 124844-124853.	4.2	5

#	Article	IF	CITATIONS
37	A Novel Iterative-SLM Algorithm for PAPR Reduction in 5G Mobile Fronthaul Architecture. IEEE Photonics Journal, 2019, 11, 1-12.	2.0	14
38	Automatic Modulation Classification: Investigation for Millimeter Wave Over Fiber Channels. IEEE Photonics Technology Letters, 2019, 31, 1092-1095.	2.5	6
39	Separability of Histogram Based Features for Optical Performance Monitoring: An Investigation Using t-SNE Technique. IEEE Photonics Journal, 2019, 11, 1-12.	2.0	22
40	5G-28 GHz Signal Transmission Over Hybrid All-Optical FSO/RF Link in Dusty Weather Conditions. IEEE Access, 2019, 7, 24404-24410.	4.2	60
41	Single- and double-beam reflectarrays for Ka band communication. Sadhana - Academy Proceedings in Engineering Sciences, 2019, 44, 1.	1.3	3
42	Modulation Format Identification in Mode Division Multiplexed Optical Networks. IEEE Access, 2019, 7, 156207-156216.	4.2	11
43	Broadly Tunable Self-injection Locked InAs/InP Quantum-dash Laser Based Fiber/FSO/Hybrid Fiber-FSO Communication at 1610 nm. IEEE Photonics Journal, 2018, 10, 1-10.	2.0	20
44	Experimental Demonstration of Simultaneous Modulation Format/Symbol Rate Identification and Optical Performance Monitoring for Coherent Optical Systems. Journal of Lightwave Technology, 2018, 36, 2230-2239.	4.6	35
45	Experimental Demonstration for PAPR Reduction in OFDM System Using Partial-OSLM Technique. Journal of Circuits, Systems and Computers, 2018, 27, 1850106.	1.5	3
46	Laser phase noise impact on optical DP-MQAM: experimental investigation. Photonic Network Communications, 2018, 35, 237-244.	2.7	1
47	Effect of temperature and ridge-width on the lasing characteristics of InAs/InP quantum-dash lasers: A thermal analysis view. Optics and Laser Technology, 2018, 98, 67-74.	4.6	9
48	Radar signal transmission and switching over optical networks. Optics Communications, 2018, 410, 385-388.	2.1	5
49	Demonstration of L-band DP-QPSK transmission over FSO and fiber channels employing InAs/InP quantum-dash laser source. Optics Communications, 2018, 410, 680-684.	2.1	10
50	All-Optical 216 Gbps Super-channel Data Switching Using Co-Polarized Pump in SOA. , 2018, , .		0
51	Terahertz Photonic Signal Generation Employing InAs/InP Quantum Dash Laser. , 2018, , .		2
52	Millimeter Wave Switching in Radio over Fiber Networks using Semiconductor Optical Amplifier (SOA). , 2018, , .		3
53	Demonstration of Photonics-Based Switching of 5G Signal Over Hybrid All-Optical Network. IEEE Photonics Technology Letters, 2018, 30, 1250-1253.	2.5	6
54	High sensitivity vanadium–vanadium pentoxide–aluminium metal–insulator–metal diode. Micro and Nano Letters, 2018, 13, 680-683.	1.3	3

#	Article	IF	CITATIONS
55	Investigation and Demonstration of High Speed Full-Optical Hybrid FSO/Fiber Communication System Under Light Sand Storm Condition. IEEE Photonics Journal, 2017, 9, 1-12.	2.0	62
56	100 Gb/s Single Channel Transmission Using Injection-Locked 1621 nm Quantum-Dash Laser. IEEE Photonics Technology Letters, 2017, 29, 543-546.	2.5	16
57	Optimizing OSSB Generation Using Semiconductor Optical Amplifier (SOA) for 5G Millimeter Wave Switching. IEEE Access, 2017, , 1-1.	4.2	9
58	Complexity reduction of equalization/pre-emphasis using set membership filtering for NG LR-PON. Photonic Network Communications, 2017, 33, 166-178.	2.7	0
59	L-Band Quantum-dash Self-Injection Locked Multiwavelength Laser Source for Future WDM Access Networks. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	16
60	Investigation and demonstration of 5G signal transmission over fiber/FSO/wireless links. , 2017, , .		4
61	Self-seeded quantum-dash laser based 5 m–128 Gb/s indoor free-space optical communication. Chinese Optics Letters, 2017, 15, 100604.	2.9	6
62	Self-seeded quantum-dash laser based 5 m-128 Gb/s indoor free-space optical communication: erratum. Chinese Optics Letters, 2017, 15, 123501.	2.9	0
63	Experimental demonstration of outdoor 2.2 Tbps super-channel FSO transmission system. , 2016, , .		25
64	Investigation of sampling frequency impact on optical DPâ€MQAM generation. Microwave and Optical Technology Letters, 2016, 58, 1128-1131.	1.4	0
65	Enhanced Blind Equalization for Optical DP-QAM in Finite Precision Hardware. IEEE Photonics Technology Letters, 2015, 27, 181-184.	2.5	2
66	An efficient fusion technique for quality enhancement of remotely sensed images. Applied Geomatics, 2014, 6, 197-205.	2.5	0
67	FPGA-based implementation of channel-blind adaptive equalizers. , 2013, , .		0
68	Up to 64 QAM/32 Gbaud flexible dual polarization transmitter for future elastic optical networks. Optical Engineering, 2013, 52, 115102.	1.0	7
69	Inverse QR decomposition (IQRD) blind equalizer for QAM coherent optical systems. , 2012, , .		1
70	Candidate modulation schemes for next generation-passive optical networks (NG-PONs). , 2012, , .		9
71	Simultaneous Fusion and Denoising of Panchromatic and Multispectral Satellite Images. Sensing and Imaging, 2012, 13, 119-141.	1.5	4