M A Fazal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4525590/publications.pdf Version: 2024-02-01

ΜΔΕΛΖΛΙ

#	Article	IF	CITATIONS
1	A comprehensive assessment of laser welding of biomedical devices and implant materials: recent research, development and applications. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 109-151.	6.8	29
2	A reliable electrochemical approach for detection of testosterone with CuO-doped CeO2 nanocomposites-coated glassy carbon electrode. Journal of Materials Science: Materials in Electronics, 2021, 32, 5259-5273.	1.1	10
3	Overview of the interactions between automotive materials and biodiesel obtained from different feedstocks. Fuel Processing Technology, 2019, 196, 106178.	3.7	38
4	Effect of Zn incorporation on the electrochemical corrosion properties of SAC105 solder alloys. Journal of Materials Science: Materials in Electronics, 2019, 30, 7415-7422.	1.1	14
5	A critical review on performance, microstructure and corrosion resistance of Pb-free solders. Measurement: Journal of the International Measurement Confederation, 2019, 134, 897-907.	2.5	61
6	Mechanical and tribological performance of a hybrid MMC coating deposited on Al–17Si piston alloy by laser composite surfacing technique. RSC Advances, 2018, 8, 6858-6869.	1.7	7
7	Sustainability of additive-doped biodiesel: Analysis of its aggressiveness toward metal corrosion. Journal of Cleaner Production, 2018, 181, 508-516.	4.6	37
8	A Critical Review on Physical Vapor Deposition Coatings Applied on Different Engine Components. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 158-175.	6.8	62
9	Influence of copper on the instability and corrosiveness of palm biodiesel and its blends: An assessment on biodiesel sustainability. Journal of Cleaner Production, 2018, 171, 1407-1414.	4.6	45
10	Analysis of Tribological Properties of Palm Biodiesel and Oxidized Biodiesel Blends. Tribology Transactions, 2017, 60, 530-536.	1.1	19
11	Effect of antioxidants on the stability and corrosiveness of palm biodiesel upon exposure of different metals. Energy, 2017, 135, 220-226.	4.5	39
12	Effect of antiâ€oxidants on the lubricity of B30 biodiesel–diesel blend. Lubrication Science, 2017, 29, 3-15.	0.9	9
13	Laser Composite Surfacing of Ni-WC Coating on AA5083 for Enhancing Tribomechanical Properties. Tribology Transactions, 2017, 60, 249-259.	1.1	8
14	Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties. Renewable and Sustainable Energy Reviews, 2017, 70, 399-412.	8.2	138
15	Polarization and EIS studies to evaluate the effect of aluminum concentration on the corrosion behavior of SAC105 solder alloy. Materials Science-Poland, 2017, 35, 694-701.	0.4	5
16	Electrochemical Corrosion Behaviour of Pb-free SAC 105 and SAC 305 Solder Alloys: A Comparative Study. Sains Malaysiana, 2017, 46, 295-302.	0.3	18
17	Investigation of the mechanical properties of electrodeposited nickel and magnetron sputtered chromium nitride coatings deposited on mild steel substrate. Journal of Adhesion Science and Technology, 2016, 30, 2224-2235.	1.4	8
18	Effect of aluminum addition on the electrochemical corrosion behavior of Sn–3Ag–0.5Cu solder alloy in 3.5Âwt% NaCl solution. Journal of Materials Science: Materials in Electronics, 2016, 27, 12193-12200.	1.1	21

M A Fazal

#	Article	IF	CITATIONS
19	Effect of Cobalt Doping on the Microstructure and Tensile Properties of Lead Free Solder Joint Subjected to Electromigration. Journal of Materials Science and Technology, 2016, 32, 1129-1136.	5.6	35
20	Structural and mechanical properties of (Cr, Ni) N single and gradient layer coatings deposited on mild steel by magnetron sputtering. Tribology - Materials, Surfaces and Interfaces, 2016, 10, 117-125.	0.6	4
21	Inhibition study of additives towards the corrosion of ferrous metal in palm biodiesel. Energy Conversion and Management, 2016, 122, 290-297.	4.4	33
22	Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review. Journal of Rare Earths, 2016, 34, 549-564.	2.5	117
23	Retardation of oxidation and material degradation in biodiesel: a review. RSC Advances, 2016, 6, 60244-60263.	1.7	37
24	A Review to the Laser Cladding of Self-Lubricating Composite Coatings. Lasers in Manufacturing and Materials Processing, 2016, 3, 67-99.	1.2	46
25	Laser-based Surface Modifications of Aluminum and its Alloys. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 106-131.	6.8	79
26	Scratch adhesion characteristics of PVD Cr/CrAlN multilayer coating deposited on aerospace AL7075-T6 alloy. Pigment and Resin Technology, 2015, 44, 364-370.	0.5	7
27	Evaluation of CrAlN multilayered coatings deposited by PVD magnetron sputtering. Journal of Adhesion Science and Technology, 2015, 29, 2076-2089.	1.4	9
28	Reduction of electromigration damage in SAC305 solder joints by adding Ni nanoparticles through flux doping. Journal of Materials Science, 2015, 50, 6748-6756.	1.7	45
29	Effect of corrosion inhibitors on corrosiveness of palm biodiesel. Corrosion Engineering Science and Technology, 2015, 50, 56-62.	0.7	18
30	Effect of Ni nanoparticles on intermetallic compounds formation in SAC305 solder joint under high current density. , 2014, , .		1
31	Effect of copper and mild steel on the stability of palm biodiesel properties: A comparative study. Industrial Crops and Products, 2014, 58, 8-14.	2.5	44
32	Influence of different factors on the stability of biodiesel: A review. Renewable and Sustainable Energy Reviews, 2014, 30, 154-163.	8.2	146
33	A critical review on the tribological compatibility of automotive materials in palm biodiesel. Energy Conversion and Management, 2014, 79, 180-186.	4.4	56
34	Impact of palm biodiesel blend on injector deposit formation. Applied Energy, 2013, 111, 882-893.	5.1	82
35	Corrosion of magnesium and aluminum in palm biodiesel: A comparative evaluation. Energy, 2013, 57, 478-483.	4.5	36
36	Corrosion mechanism of copper in palm biodiesel. Corrosion Science, 2013, 67, 50-59.	3.0	114

M A Fazal

#	Article	IF	CITATIONS
37	Investigation of friction and wear characteristics of palm biodiesel. Energy Conversion and Management, 2013, 67, 251-256.	4.4	131
38	Degradation of automotive materials in palm biodiesel. Energy, 2012, 40, 76-83.	4.5	93
39	Effect of different corrosion inhibitors on the corrosion of cast iron in palm biodiesel. Fuel Processing Technology, 2011, 92, 2154-2159.	3.7	60
40	Degradation of physical properties of different elastomers upon exposure to palm biodiesel. Energy, 2011, 36, 1814-1819.	4.5	92
41	Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel. Energy, 2011, 36, 3328-3334.	4.5	82
42	Compatibility of automotive materials in biodiesel: A review. Fuel, 2011, 90, 922-931.	3.4	217
43	Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability. Renewable and Sustainable Energy Reviews, 2011, 15, 1314-1324.	8.2	350
44	Effect of temperature on tribological properties of palm biodiesel. Energy, 2010, 35, 1460-1464.	4.5	135
45	Compatibility of elastomers in palm biodiesel. Renewable Energy, 2010, 35, 2356-2361.	4.3	97
46	Corrosion characteristics of copper and leaded bronze in palm biodiesel. Fuel Processing Technology, 2010, 91, 329-334.	3.7	142
47	Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials. Fuel Processing Technology, 2010, 91, 1308-1315.	3.7	190