Chunlei Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4525464/publications.pdf Version: 2024-02-01

CHUNLEI TANC

#	Article	IF	CITATIONS
1	High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Communications, 2013, 4, 2673.	12.8	238
2	An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nature Communications, 2019, 10, 5571.	12.8	129
3	cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genomics, 2009, 10, 289.	2.8	81
4	Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology, 2010, 10, 9.	3.6	81
5	TaADF7, an actinâ€depolymerizing factor, contributes to wheat resistance against <i>Puccinia striiformis</i> Âf.Âsp. <i>tritici</i> . Plant Journal, 2014, 78, 16-30.	5.7	79
6	Characterization of a pathogenesis-related thaumatin-like protein gene <i>TaPR5</i> from wheat induced by stripe rust fungus. Physiologia Plantarum, 2010, 139, 27-38.	5.2	76
7	Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell, 2022, 185, 2961-2974.e19.	28.9	74
8	<i>TaMCA4</i> , a Novel Wheat Metacaspase Gene Functions in Programmed Cell Death Induced by the Fungal Pathogen <i>Puccinia striiformis</i> f. sp. <i>tritici</i> . Molecular Plant-Microbe Interactions, 2012, 25, 755-764.	2.6	67
9	Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. Journal of Experimental Botany, 2012, 63, 4571-4584.	4.8	60
10	Candidate Effector Pst_8713 Impairs the Plant Immunity and Contributes to Virulence of Puccinia striiformis f. sp. tritici. Frontiers in Plant Science, 2018, 9, 1294.	3.6	45
11	TaADF3, an Actin-Depolymerizing Factor, Negatively Modulates Wheat Resistance Against Puccinia striiformis. Frontiers in Plant Science, 2015, 6, 1214.	3.6	41
12	<i>TaDAD2</i> , a Negative Regulator of Programmed Cell Death, Is Important for the Interaction Between Wheat and the Stripe Rust Fungus. Molecular Plant-Microbe Interactions, 2011, 24, 79-90.	2.6	37
13	Transcriptional repression of <i>TaNOX10</i> by TaWRKY19 compromises ROS generation and enhances wheat susceptibility to stripe rust. Plant Cell, 2022, 34, 1784-1803.	6.6	37
14	Haustoria – arsenals during the interaction between wheat and <i>Puccinia striiformis</i> f. sp. <i>tritici</i> . Molecular Plant Pathology, 2020, 21, 83-94.	4.2	34
15	A polysaccharide deacetylase from <i>Puccinia striiformis</i> f. sp <i>. tritici</i> is an important pathogenicity gene that suppresses plant immunity. Plant Biotechnology Journal, 2020, 18, 1830-1842.	8.3	34
16	<scp><i>Ta</i>EIL1</scp> , a wheat homologue of <scp><i>At</i>EIN3</scp> , acts as a negative regulator in the wheat–stripe rust fungus interaction. Molecular Plant Pathology, 2013, 14, 728-739.	4.2	32
17	A rust fungus effector directly binds plant preâ€mRNA splice site to reprogram alternative splicing and suppress host immunity. Plant Biotechnology Journal, 2022, 20, 1167-1181.	8.3	29
18	Understanding the lifestyles and pathogenicity mechanisms of obligate biotrophic fungi in wheat: The emerging genomics era. Crop Journal, 2018, 6, 60-67.	5.2	28

CHUNLEI TANG

#	Article	IF	CITATIONS
19	Two stripe rust effectors impair wheat resistance by suppressing import of host Fe – S protein into chloroplasts . Plant Physiology, 2021, 187, 2530-2543.	4.8	28
20	Functions of the lethal leaf-spot 1 gene in wheat cell death and disease tolerance to Puccinia striiformis. Journal of Experimental Botany, 2013, 64, 2955-2969.	4.8	26
21	PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth. Scientific Reports, 2015, 5, 11241.	3.3	21
22	TaMCA1, a regulator of cell death, is important for the interaction between wheat and Puccinia striiformis. Scientific Reports, 2016, 6, 26946.	3.3	15
23	Detection of <i>Puccinia striiformis</i> in Latently Infected Wheat Leaves by Nested Polymerase Chain Reaction. Journal of Phytopathology, 2009, 157, 490-493.	1.0	13
24	Wheat Gene TaATG8j Contributes to Stripe Rust Resistance. International Journal of Molecular Sciences, 2018, 19, 1666.	4.1	12
25	Identification of a Hyperparasitic Simplicillium obclavatum Strain Affecting the Infection Dynamics of Puccinia striiformis f. sp. tritici on Wheat. Frontiers in Microbiology, 2020, 11, 1277.	3.5	9
26	Wheat-Puccinia striiformis Interactions. , 2017, , 155-282.		7
27	New insights in the battle between wheat and Puccinia striiformis. Frontiers of Agricultural Science and Engineering, 2015, 2, 101.	1.4	7
28	PsRPs26, a 40S Ribosomal Protein Subunit, Regulates the Growth and Pathogenicity of Puccinia striiformis f. sp. Tritici. Frontiers in Microbiology, 2019, 10, 968.	3.5	6