Qunxin She

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4525451/publications.pdf

Version: 2024-02-01

71532 50170 6,958 132 46 76 citations h-index g-index papers 140 140 140 3531 times ranked citing authors docs citations all docs

#	Article	IF	CITATIONS
1	The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7835-7840.	3.3	718
2	The Genome of Sulfolobus acidocaldarius , a Model Organism of the Crenarchaeota. Journal of Bacteriology, 2005, 187, 4992-4999.	1.0	262
3	A novel interference mechanism by a type <scp>IIIB CRISPR</scp> â€ <scp>Cmr</scp> module in <i><scp>S</scp>ulfolobus</i> . Molecular Microbiology, 2013, 87, 1088-1099.	1.2	224
4	Dynamic properties of the <i>Sulfolobus</i> CRISPR/Cas and CRISPR/Cmr systems when challenged with vectorâ€borne viral and plasmid genes and protospacers. Molecular Microbiology, 2011, 79, 35-49.	1.2	205
5	Unmarked gene deletion and host–vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles, 2009, 13, 735-746.	0.9	189
6	Structural and Functional Characterization of an Archaeal Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Complex for Antiviral Defense (CASCADE). Journal of Biological Chemistry, 2011, 286, 21643-21656.	1.6	183
7	Harnessing Type I and Type III CRISPR-Cas systems for genome editing. Nucleic Acids Research, 2016, 44, e34-e34.	6.5	176
8	Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles, 1998, 2, 131-140.	0.9	148
9	An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Research, 2015, 43, 406-417.	6.5	147
10	Genome Analyses of Icelandic Strains of <i>Sulfolobus islandicus </i> , Model Organisms for Genetic and Virus-Host Interaction Studies. Journal of Bacteriology, 2011, 193, 1672-1680.	1.0	139
11	Nucleotide sequence of pOLA52: A conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid, 2008, 60, 59-74.	0.4	136
12	Sulfolobus tengchongensis Spindle-Shaped Virus STSV1: Virus-Host Interactions and Genomic Features. Journal of Virology, 2005, 79, 8677-8686.	1.5	119
13	Genetic profile of pNOB8 from Sulfolobus : the first conjugative plasmid from an archaeon. Extremophiles, 1998, 2, 417-425.	0.9	116
14	Sequences and Replication of Genomes of the Archaeal Rudiviruses SIRV1 and SIRV2: Relationships to the Archaeal Lipothrixvirus SIFV and Some Eukaryal Viruses. Virology, 2001, 291, 226-234.	1.1	112
15	A Synthetic Arabinose-Inducible Promoter Confers High Levels of Recombinant Protein Expression in Hyperthermophilic Archaeon Sulfolobus islandicus. Applied and Environmental Microbiology, 2012, 78, 5630-5637.	1.4	111
16	The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Molecular Microbiology, 1999, 34, 217-226.	1.2	107
17	Relationships between fuselloviruses infecting the extremely thermophilic archaeon Sulfolobus: SSV1 and SSV2. Research in Microbiology, 2003, 154, 295-302.	1.0	104
18	Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR- <i>cas</i> gene cassettes reveals 39 new <i>cas</i> gene families. RNA Biology, 2019, 16, 530-542.	1.5	97

#	Article	IF	Citations
19	Mobile elements in archaeal genomes. FEMS Microbiology Letters, 2002, 206, 131-141.	0.7	90
20	Mobile elements in archaeal genomes. FEMS Microbiology Letters, 2002, 206, 131-141.	0.7	89
21	Diversity and Contributions to Nitrogen Cycling and Carbon Fixation of Soil Salinity Shaped Microbial Communities in Tarim Basin. Frontiers in Microbiology, 2018, 9, 431.	1.5	89
22	Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism. Environmental Microbiology, 2009, 11, 2849-2862.	1.8	85
23	An upstream activation element exerting differential transcriptional activation on an archaeal promoter. Molecular Microbiology, 2009, 74, 928-939.	1.2	77
24	pING Family of Conjugative Plasmids from the Extremely Thermophilic Archaeon Sulfolobus islandicus: Insights into Recombination and Conjugation in Crenarchaeota. Journal of Bacteriology, 2000, 182, 7014-7020.	1.0	74
25	Structure of Csx1-cOA4 complex reveals the basis of RNA decay in Type III-B CRISPR-Cas. Nature Communications, 2019, 10, 4302.	5.8	72
26	Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic Acids Research, 2012, 40, 2470-2480.	6.5	70
27	Characterization of the Sulfolobus host–SSV2 virus interaction. Extremophiles, 2006, 10, 615-627.	0.9	68
28	Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus 1 1Edited by J. Karn. Journal of Molecular Biology, 2000, 303, 449-454.	2.0	67
29	Genus-Specific Protein Binding to the Large Clusters of DNA Repeats (Short Regularly Spaced Repeats) Present in Sulfolobus Genomes. Journal of Bacteriology, 2003, 185, 2410-2417.	1.0	67
30	A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. Nucleic Acids Research, 2017, 45, gkw1274.	6.5	67
31	CRISPR-based immune systems of the Sulfolobales: complexity and diversity. Biochemical Society Transactions, 2011, 39, 51-57.	1.6	64
32	Specificity and Function of Archaeal DNA Replication Initiator Proteins. Cell Reports, 2013, 3, 485-496.	2.9	64
33	Archaeal Extrachromosomal Genetic Elements. Microbiology and Molecular Biology Reviews, 2015, 79, 117-152.	2.9	64
34	Genetic manipulation in <i>Sulfolobus islandicus</i> and functional analysis of DNA repair genes. Biochemical Society Transactions, 2013, 41, 405-410.	1.6	63
35	Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Nucleic Acids Research, 2015, 43, 1044-1055.	6.5	60
36	Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus. Nucleic Acids Research, 2017, 45, 8978-8992.	6.5	60

#	Article	IF	CITATIONS
37	Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates. Applied Microbiology and Biotechnology, 2007, 74, 688-698.	1.7	59
38	Completing the sequence of the Sulfolobus solfataricus P2 genome. Extremophiles, 1998, 2, 305-312.	0.9	58
39	A Putative ABC Transporter Is Involved in Negative Regulation of Biofilm Formation by <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2008, 74, 7675-7683.	1.4	58
40	Revealing the essentiality of multiple archaeal pcna genes using a mutant propagation assay based on an improved knockout method. Microbiology (United Kingdom), 2010, 156, 3386-3397.	0.7	58
41	Key Role of Cysteine Residues in Catalysis and Subcellular Localization of Sulfur Oxygenase-Reductase of Acidianus tengchongensis. Applied and Environmental Microbiology, 2005, 71, 621-628.	1.4	56
42	Genetic analyses in the hyperthermophilic archaeon <i>Sulfolobus islandicus</i> . Biochemical Society Transactions, 2009, 37, 92-96.	1.6	55
43	Genomics and genetics of <i> Sulfolobus islandicus </i> LAL14/1, a model hyperthermophilic archaeon. Open Biology, 2013, 3, 130010.	1.5	55
44	Archaeal integrases and mechanisms of gene capture. Biochemical Society Transactions, 2004, 32, 222-226.	1.6	54
45	Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea. Science China Life Sciences, 2017, 60, 370-385.	2.3	53
46	Gene capture in archaeal chromosomes. Nature, 2001, 409, 478-478.	13.7	52
47	A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Nucleic Acids Research, 2018, 46, 10319-10330.	6.5	51
48	Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in <i><i>Sulfolobus islandicus</i>RNA Biology, 2013, 10, 738-748.</i>	1.5	50
49	Development of a Simvastatin Selection Marker for a Hyperthermophilic Acidophile, Sulfolobus islandicus. Applied and Environmental Microbiology, 2012, 78, 568-574.	1.4	48
50	CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b. Nucleic Acids Research, 2017, 45, gkw1265.	6.5	48
51	An Orc1/Cdc6 ortholog functions as a key regulator in the DNA damage response in Archaea. Nucleic Acids Research, 2018, 46, 6697-6711.	6.5	47
52	Novel insights into gene regulation of the rudivirus SIRV2 infecting <i>Sulfolobus</i> Cells. RNA Biology, 2013, 10, 875-885.	1.5	43
53	Transcriptome analysis of Sulfolobus solfataricus infected with two related fuselloviruses reveals novel insights into the regulation of ACRISPR-Cas system. Biochimie, 2015, 118, 322-332.	1.3	43
54	Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail. Nucleic Acids Research, 2017, 45, 10740-10750.	6.5	43

#	Article	IF	Citations
55	Structures of the Cmr \cdot 1 ² Complex Reveal the Regulation of the Immunity Mechanism of Type III-B CRISPR-Cas. Molecular Cell, 2020, 79, 741-757.e7.	4.5	43
56	A novel Sulfolobus non-conjugative extrachromosomal genetic element capable of integration into the host genome and spreading in the presence of a fusellovirus. Virology, 2007, 363, 124-133.	1.1	42
57	Sulfolobus Turreted Icosahedral Virus c92 Protein Responsible for the Formation of Pyramid-Like Cellular Lysis Structures. Journal of Virology, 2011, 85, 6287-6292.	1.5	42
58	The genome of (i>Hyperthermus butylicus (i>: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 °C. Archaea, 2007, 2, 127-135.	2.3	41
59	Non-autonomous mobile elements in the crenarchaeon Sulfolobus solfataricus 11 Edited by J. Karn. Journal of Molecular Biology, 2001, 306, 1-6.	2.0	40
60	CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity. Life, 2015, 5, 783-817.	1.1	39
61	A novel single-tailed fusiform Sulfolobus virus STSV2 infecting model Sulfolobus species. Extremophiles, 2014, 18, 51-60.	0.9	38
62	A short prokaryotic Argonaute activates membrane effector to confer antiviral defense. Cell Host and Microbe, 2022, 30, 930-943.e6.	5.1	38
63	Archaeal integrative genetic elements and their impact on genome evolution. Research in Microbiology, 2002, 153, 325-332.	1.0	37
64	Efficient 5′-3′ DNA end resection by HerA and NurA is essential for cell viability in the crenarchaeon Sulfolobus islandicus. BMC Molecular Biology, 2015, 16, 2.	3.0	37
65	Genomic analysis of Acidianus hospitalis W1 a host for studying crenarchaeal virus and plasmid life cycles. Extremophiles, $2011, 15, 487-497$.	0.9	35
66	Genomic and transcriptomic analyses reveal distinct biological functions for cold shock proteins (VpaCspA and VpaCspD) in Vibrio parahaemolyticus CHN25 during low-temperature survival. BMC Genomics, 2017, 18, 436.	1.2	35
67	A transcriptional factor B paralog functions as an activator to DNA damage-responsive expression in archaea. Nucleic Acids Research, 2018, 46, 7085-7096.	6.5	32
68	Knockouts of RecA-Like Proteins RadC1 and RadC2 Have Distinct Responses to DNA Damage Agents in Sulfolobus islandicus. Journal of Genetics and Genomics, 2013, 40, 533-542.	1.7	31
69	Molecular biology of fuselloviruses and their satellites. Extremophiles, 2014, 18, 473-489.	0.9	30
70	Phenotypic, Proteomic, and Genomic Characterization of a Putative ABC-Transporter Permease Involved in <i>Listeria monocytogenes</i> Biofilm Formation. Foodborne Pathogens and Disease, 2011, 8, 495-501.	0.8	29
71	Archaeal promoter architecture and mechanism of gene activation. Biochemical Society Transactions, 2011, 39, 99-103.	1.6	25
72	T _{lys} , a Newly Identified Sulfolobus Spindle-Shaped Virus 1 Transcript Expressed in the Lysogenic State, Encodes a DNA-Binding Protein Interacting at the Promoters of the Early Genes. Journal of Virology, 2013, 87, 5926-5936.	1.5	25

#	Article	IF	CITATIONS
73	Genetic analysis of the Holliday junction resolvases Hje and Hjc in Sulfolobus islandicus. Extremophiles, 2015, 19, 505-514.	0.9	25
74	C68 from the ⟨i⟩Sulfolobus islandicus⟨/i⟩ plasmid–virus pSSVx is a novel member of the AbrB-like transcription factor family. Biochemical Journal, 2011, 435, 157-166.	1.7	24
75	Exceptional thermal stability and organic solvent tolerance of an esterase expressed from a thermophilic host. Applied Microbiology and Biotechnology, 2012, 93, 1965-1974.	1.7	24
76	Characterization of pMC11, a plasmid with dual origins of replication isolated from Lactobacillus casei MCJ and construction of shuttle vectors with each replicon. Applied Microbiology and Biotechnology, 2014, 98, 5977-5989.	1.7	24
77	Unravelling the Role of the F55 Regulator in the Transition from Lysogeny to UV Induction of Sulfolobus Spindle-Shaped Virus 1. Journal of Virology, 2015, 89, 6453-6461.	1.5	24
78	Reverse Gyrase Functions in Genome Integrity Maintenance by Protecting DNA Breaks In Vivo. International Journal of Molecular Sciences, 2017, 18, 1340.	1.8	24
79	Sulfolobus genome: from genomics to biology. Current Opinion in Microbiology, 1998, 1, 584-588.	2.3	23
80	Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from (i) Sulfolobus neozealandicus (i). Archaea, 2005, 1, 319-325.	2.3	23
81	Archaeal viruses—novel, diverse and enigmatic. Science China Life Sciences, 2012, 55, 422-433.	2.3	23
82	Dissection of the functional domains of an archaeal Holliday junction helicase. DNA Repair, 2012, 11, 102-111.	1.3	23
83	Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR–Cas system by binding to target RNA and crRNA. Nucleic Acids Research, 2017, 45, 11305-11314.	6.5	23
84	NQO-Induced DNA-Less Cell Formation Is Associated with Chromatin Protein Degradation and Dependent on A0A1-ATPase in Sulfolobus. Frontiers in Microbiology, 2017, 8, 1480.	1.5	23
85	Characterization of a novel type III CRISPR-Cas effector provides new insights into the allosteric activation and suppression of the Cas10 DNase. Cell Discovery, 2020, 6, 29.	3.1	22
86	Archaea and the new age of microorganisms. Trends in Ecology and Evolution, 1998, 13, 190-194.	4.2	21
87	Transcriptional Analysis of the Genetic Element pSSVx: Differential and Temporal Regulation of Gene Expression Reveals Correlation between Transcription and Replication. Journal of Bacteriology, 2007, 189, 6339-6350.	1.0	21
88	CRISPR History: Discovery, Characterization, and Prosperity. Progress in Molecular Biology and Translational Science, 2017, 152, 1-21.	0.9	20
89	Type III CRISPR-Cas System: Introduction And Its Application for Genetic Manipulations. Current Issues in Molecular Biology, 2018, 26, 1-14.	1.0	20
90	In vivo and in vitro protein imaging in thermophilic archaea by exploiting a novel protein tag. PLoS ONE, 2017, 12, e0185791.	1.1	19

#	Article	IF	CITATIONS
91	A novel carboxyl-terminal protease derived from Paenibacillus lautusCHN26 exhibiting high activities at multiple sites of substrates. BMC Biotechnology, 2013, 13, 89.	1.7	18
92	Diverse CRISPR-Cas responses and dramatic cellular DNA changes and cell death in pKEF9-conjugated <i>Sulfolobus</i> <pre>li>species</pre> . Nucleic Acids Research, 2016, 44, 4233-4242.	6.5	18
93	A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system. RNA Biology, 2019, 16, 1166-1178.	1.5	18
94	Transcription termination in the plasmid/virus hybrid pSSVx from Sulfolobus islandicus. Extremophiles, 2010, 14, 453-463.	0.9	17
95	Tolerance of <i>Sulfolobus</i> SMV1 virus to the immunity of I-A and III-B CRISPR-Cas systems in <i>Sulfolobus islandicus</i> RNA Biology, 2019, 16, 549-556.	1.5	17
96	Major and minor crRNA annealing sites facilitate low stringency DNA protospacer binding prior to Type I-A CRISPR-Cas interference in <i>Sulfolobus</i> . RNA Biology, 2016, 13, 1166-1173.	1.5	15
97	The apt /6-Methylpurine Counterselection System and Its Applications in Genetic Studies of the Hyperthermophilic Archaeon Sulfolobus islandicus. Applied and Environmental Microbiology, 2016, 82, 3070-3081.	1.4	15
98	Comparative sequence analysis of cis elements present in Glycine max L. leghemoglobin lba and lbc3 genes. Plant Molecular Biology, 1993, 22, 931-935.	2.0	14
99	Minimal enhancer elements of the leghemoglobinIba andIbc3 gene promoters fromGlycine max L. have different properties. Plant Molecular Biology, 1993, 22, 945-956.	2.0	14
100	Organization and expression of genes in the genomic region surrounding the glutamine synthetase gene Gln1 from Lotus japonicus. Molecular Genetics and Genomics, 1997, 255, 628-636.	2.4	14
101	Deletion of the topoisomerase III gene in the hyperthermophilic archaeon Sulfolobus islandicus results in slow growth and defects in cell cycle control. Journal of Genetics and Genomics, 2011, 38, 253-259.	1.7	14
102	An archaeal protein evolutionarily conserved in prokaryotes is a zinc-dependent metalloprotease. Bioscience Reports, 2012, 32, 609-618.	1.1	14
103	Molecular cloning of a novel bioH gene from an environmental metagenome encoding a carboxylesterase with exceptional tolerance to organic solvents. BMC Biotechnology, 2013, 13, 13.	1.7	14
104	Transcriptomic analysis of the SSV2 infection of Sulfolobus solfataricus with and without the integrative plasmid pSSVi. Virology, 2013, 441, 126-134.	1,1	14
105	CRISPR-Cas adaptive immune systems in Sulfolobales: genetic studies and molecular mechanisms. Science China Life Sciences, 2021, 64, 678-696.	2.3	14
106	A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota. Frontiers in Microbiology, 2020, 11, 1585.	1.5	13
107	Gene content and organization of a 281-kbp contig from the genome of the extremely thermophilic archaeon, Sulfolobus solfataricus P2. Genome, 2000, 43, 116-136.	0.9	11
108	Cmr3 regulates the suppression on cyclic oligoadenylate synthesis by tag complementarity in a Type III-B CRISPR-Cas system. RNA Biology, 2019, 16, 1513-1520.	1.5	11

#	Article	IF	Citations
109	A Membrane-Associated DHH-DHHA1 Nuclease Degrades Type III CRISPR Second Messenger. Cell Reports, 2020, 32, 108133.	2.9	11
110	A Bac Library and Paired-PCR Approach to Mapping and Completing the Genome Sequence of <i>Sulfolobus Solfataricus </i> i>P2. DNA Sequence, 2000, 11, 183-192.	0.7	10
111	Evolutionary Trajectory of the Replication Mode of Bacterial Replicons. MBio, 2021, 12, .	1.8	10
112	A type III-A CRISPR–Cas system mediates co-transcriptional DNA cleavage at the transcriptional bubbles in close proximity to active effectors. Nucleic Acids Research, 2021, 49, 7628-7643.	6.5	10
113	Nanobiomotors of archaeal DNA repair machineries: current research status and application potential. Cell and Bioscience, 2014, 4, 32.	2.1	8
114	Molecular mechanisms of III-B CRISPR–Cas systems in archaea. Emerging Topics in Life Sciences, 2018, 2, 483-491.	1.1	8
115	Comparative genomics for non-O1/O139 Vibrio cholerae isolates recovered from the Yangtze River Estuary versus V. cholerae representative isolates from serogroup O1. Molecular Genetics and Genomics, 2019, 294, 417-430.	1.0	8
116	The extraordinary thermal stability of EstA from <i>S. islandicus</i> is independent of post translational modifications. Protein Science, 2017, 26, 1819-1827.	3.1	8
117	Archaeal Plasmids. , 0, , 377-392.		8
118	Heterologous Expression of Mannanase and Developing a New Reporter Gene System in Lactobacillus casei and Escherichia coli. PLoS ONE, 2015, 10, e0142886.	1.1	7
119	Sulfolobus Replication Factor C Stimulates the Activity of DNA Polymerase B1. Journal of Bacteriology, 2014, 196, 2367-2375.	1.0	6
120	Construction and characterization of three protein-targeting expression system in <i>Lactobacillus casei</i> . FEMS Microbiology Letters, 2016, 363, fnw041.	0.7	4
121	Recombinant protein expression in Sulfolobus islandicus. Methods in Enzymology, 2021, 659, 275-295.	0.4	3
122	A Well-Conserved Archaeal B-Family Polymerase Functions as an Extender in Translesion Synthesis. MBio, 2022, 13, e0265921.	1.8	3
123	Enzymatic Switching Between Archaeal DNA Polymerases Facilitates Abasic Site Bypass. Frontiers in Microbiology, 2021, 12, 802670.	1.5	3
124	Gene content and organization of a 281-kbp contig from the genome of the extremely thermophilic archaeon, <i>Sulfolobus solfataricus</i> P2. Genome, 2000, 43, 116-136.	0.9	2
125	Integration Mechanisms: Possible Role in Genome Evolution. , 0, , 113-123.		1
126	Crenarchaeal 3D Genome: A Prototypical Chromosome Architecture for Eukaryotes. Cell, 2019, 179, 56-58.	13.5	1

#	Article	IF	CITATIONS
127	Genome editing from Cas9 to IscB: Backwards and forwards towards new breakthroughs. Engineering Microbiology, 2021, 1, 100004.	2.2	1
128	Purification and characterization of ribonucleoprotein effector complexes of Sulfolobus islandicus CRISPR-Cas systems. Methods in Enzymology, 2021, 659, 327-347.	0.4	1
129	DNA Damage Repair in Archaea. , 2017, , 305-318.		0
130	Antiviral Defense Mechanisms in Archaea. , 2021, , 400-406.		0
131	Type III CRISPR-Cas System: Introduction And Its Application for Genetic Manipulations. , 2017, , .		0
132	A Membrane-Associated Nuclease Degrades Cyclic Oligo-Adenylate and Deactivates Type III CRISPR Ribonuclease. SSRN Electronic Journal, 0, , .	0.4	0