Michael A.R. Meier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4525382/publications.pdf Version: 2024-02-01

		20036	25230
277	15,678	63	113
papers	citations	h-index	g-index
315	315	315	11863
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	3.2	1
2	Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles. Journal of Materials Chemistry B, 2022, 10, 3895-3905.	2.9	6
3	Polythiosemicarbazones by Condensation of Dithiosemicarbazides and Dialdehydes. Macromolecules, 2022, 55, 3267-3275.	2.2	1
4	Sustainable Synthesis of Nonâ€lsocyanate Polyurethanes Based on Renewable 2,3â€Butanediol. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	7
5	Synthesis and Encapsulation of Uniform Starâ€Shaped Blockâ€Macromolecules. Macromolecular Rapid Communications, 2021, 42, 2000467.	2.0	3
6	Sustainable Fatty Acid Modification of Cellulose in a CO ₂ -Based Switchable Solvent and Subsequent Thiol-Ene Modification. Biomacromolecules, 2021, 22, 586-593.	2.6	19
7	Synthesis of Passeriniâ€3CR Polymers and Assembly into Cytocompatible Polymersomes. Macromolecular Rapid Communications, 2021, 42, e2000321.	2.0	8
8	Fully Renewable Nonâ€Isocyanate Polyurethanes via the Lossen Rearrangement. Macromolecular Rapid Communications, 2021, 42, e2000440.	2.0	15
9	Synthesis of new Biginelli polycondensates: renewable materials with tunable high glass transition temperatures. Polymer International, 2021, 70, 506-513.	1.6	6
10	Regeneration of Cellulose from a Switchable Ionic Liquid: Toward More Sustainable Cellulose Fibers. Macromolecular Chemistry and Physics, 2021, 222, 2000433.	1.1	5
11	Functional Polyethylenes by Organometallic-Mediated Radical Polymerization of Biobased Carbonates. ACS Macro Letters, 2021, 10, 313-320.	2.3	14
12	Multicomponent Reactions in Polymer Science. Macromolecular Rapid Communications, 2021, 42, e2100104.	2.0	20
13	A Practical and Efficient Synthesis of Uniform Conjugated Rodâ€Like Oligomers. Macromolecular Rapid Communications, 2021, 42, e2000735.	2.0	1
14	Fettsären und Fettsärederivate als nachwachsende Plattformmoleküle für die chemische Industrie. Angewandte Chemie, 2021, 133, 20304-20326.	1.6	11
15	Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry. Angewandte Chemie - International Edition, 2021, 60, 20144-20165.	7.2	114
16	Shaping Effective Practices for Incorporating Sustainability Assessment in Manuscripts Submitted to ACS Sustainable Chemistry & Engineering: Biomaterials. ACS Sustainable Chemistry and Engineering, 2021, 9, 7400-7402.	3.2	2
17	Selective Catalytic Epoxide Ring-Opening of Limonene Dioxide with Water. ACS Sustainable Chemistry and Engineering, 2021, 9, 7713-7718.	3.2	3
18	Direct electrospinning of cellulose in the DBU-CO2 switchable solvent system. Cellulose, 2021, 28, 6869-6880	2.4	5

#	Article	IF	CITATIONS
19	Oneâ€Pot Synthesis of Thiocarbamates. European Journal of Organic Chemistry, 2021, 2021, 4508-4516.	1.2	5
20	A more sustainable synthesis approach for cellulose acetate using the DBU/CO ₂ switchable solvent system. Green Chemistry, 2021, 23, 4410-4420.	4.6	29
21	A more sustainable isothiocyanate synthesis by amine catalyzed sulfurization of isocyanides with elemental sulfur. RSC Advances, 2021, 11, 3134-3142.	1.7	25
22	Sustainable Chemistry and Engineering in Pharma. ACS Sustainable Chemistry and Engineering, 2021, 9, 13395-13398.	3.2	5
23	Sustainable One-Pot Cellulose Dissolution and Derivatization via a Tandem Reaction in the DMSO/DBU/CO ₂ Switchable Solvent System. Journal of the American Chemical Society, 2021, 143, 18693-18702.	6.6	27
24	Expectations for Perspectives in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16528-16530.	3.2	1
25	Uniform poly(ethylene glycol): a comparative study. Polymer Journal, 2020, 52, 165-178.	1.3	12
26	Modification of Starch via the Biginelli Multicomponent Reaction. Macromolecular Rapid Communications, 2020, 41, e1900375.	2.0	11
27	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	3.2	6
28	Rheological and mechanical properties of cellulose/LDPE composites using sustainable and fully renewable compatibilisers. Journal of Applied Polymer Science, 2020, 137, 48744.	1.3	12
29	Sustainable Functionalization of 2,3-Dialdehyde Cellulose via the Passerini Three-Component Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 15755-15760.	3.2	21
30	A Direct Oneâ€Pot Modification of βâ€Cyclodextrin via the Ugiâ€Fiveâ€Component Reaction. ChemistrySelect, 2020, 5, 10765-10770.	0.7	0
31	Expectations for Manuscripts in ACS Sustainable Chemistry & Engineering: Scope Summary and Call for Creativity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16046-16047.	3.2	2
32	Novel Access to Known and Unknown Thiourea Catalyst via a Multicomponentâ€Reaction Approach. ChemistrySelect, 2020, 5, 11915-11920.	0.7	7
33	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	1.1	69
34	Progress Toward Sustainable Reversible Deactivation Radical Polymerization. Macromolecular Rapid Communications, 2020, 41, e2000266.	2.0	33
35	Expectations for Manuscripts on Biomass Feedstocks and Processing in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 11031-11032.	3.2	2
36	Remembering Professor, Academician, and Editor Lina Zhang. ACS Sustainable Chemistry and Engineering, 2020, 8, 16385-16385.	3.2	0

#	Article	IF	CITATIONS
37	Sustainable catalytic rearrangement of terpene-derived epoxides: towards bio-based biscarbonyl monomers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190267.	1.6	16
38	Reading mixtures of uniform sequence-defined macromolecules to increase data storage capacity. Communications Chemistry, 2020, 3, .	2.0	13
39	The Changing Structure of Scientific Communication: Expanding the Nature of Letters Submissions to ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 8469-8470.	3.2	0
40	Sensitizing TADF Absorption Using Variable Length Oligo(phenylene ethynylene) Antennae. Frontiers in Chemistry, 2020, 8, 126.	1.8	3
41	A more sustainable and highly practicable synthesis of aliphatic isocyanides. Green Chemistry, 2020, 22, 933-941.	4.6	38
42	Expectations for Papers on Sustainable Materials in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 1703-1704.	3.2	9
43	Dual sequence definition increases the data storage capacity of sequence-defined macromolecules. Communications Chemistry, 2020, 3, .	2.0	28
44	Fatty Acid–Derived Aliphatic Long Chain Polyethers by a Combination of Catalytic Ester Reduction and ADMET or Thiolâ€Ene Polymerization. Macromolecular Chemistry and Physics, 2019, 220, 1800440.	1.1	31
45	Perspective: green polyurethane synthesis for coating applications. Polymer International, 2019, 68, 826-831.	1.6	45
46	Biocompatible Unimolecular Micelles Obtained via the Passerini Reaction as Versatile Nanocarriers for Potential Medical Applications. Biomacromolecules, 2019, 20, 90-101.	2.6	21
47	Facile and Sustainable Synthesis of Erythritol bis(carbonate), a Valuable Monomer for Non-Isocyanate Polyurethanes (NIPUs). Scientific Reports, 2019, 9, 9858.	1.6	14
48	Functional Polyethylene (PE) and PE-Based Block Copolymers by Organometallic-Mediated Radical Polymerization. Macromolecules, 2019, 52, 9053-9063.	2.2	25
49	1 H PFGâ€NMR Diffusion Study on a Sequenceâ€Defined Macromolecule: Confirming Monodispersity. Macromolecular Chemistry and Physics, 2019, 220, 1900155.	1.1	4
50	Direct Catalytic Route to Biomass-Derived 2,5-Furandicarboxylic Acid and Its Use as Monomer in a Multicomponent Polymerization. ACS Omega, 2019, 4, 16972-16979.	1.6	24
51	On the macrocyclization selectivity of meta-substituted diamines and dialdehydes: towards macrocycles with tunable functional peripheries. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 95, 119-134.	0.9	2
52	Direct comparison of solution and solid phase synthesis of sequence-defined macromolecules. Polymer Chemistry, 2019, 10, 3859-3867.	1.9	31
53	Monodisperse, sequence-defined macromolecules as a tool to evaluate the limits of ring-closing metathesis. Polymer Chemistry, 2019, 10, 2716-2722.	1.9	7
54	Plantâ€Oilâ€Based Polyamides and Polyurethanes: Toward Sustainable Nitrogenâ€Containing Thermoplastic Materials. Macromolecular Rapid Communications, 2019, 40, e1800524.	2.0	58

#	Article	IF	CITATIONS
55	Critical Review on Sustainable Homogeneous Cellulose Modification: Why Renewability Is Not Enough. ACS Sustainable Chemistry and Engineering, 2019, 7, 1826-1840.	3.2	121
56	Plant-Based Nonactivated Olefins: A New Class of Renewable Monomers for Controlled Radical Polymerization. ACS Sustainable Chemistry and Engineering, 2019, 7, 2751-2762.	3.2	16
57	A New Class of Materials: Sequenceâ€Defined Macromolecules and Their Emerging Applications. Advanced Materials, 2019, 31, e1806027.	11.1	115
58	Polymacrocycles Derived via Ugi Multi omponent Reactions. Macromolecular Rapid Communications, 2019, 40, e1800748.	2.0	13
59	Sustainable Approach for Cellulose Aerogel Preparation from the DBU–CO ₂ Switchable Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 3329-3338.	3.2	38
60	Why Wasn't My <i>ACS Sustainable Chemistry & Engineering</i> Manuscript Sent Out for Review?. ACS Sustainable Chemistry and Engineering, 2019, 7, 1-2.	3.2	5
61	Digitalisierung: Moleküle für 007. Nachrichten Aus Der Chemie, 2019, 67, 45-46.	0.0	Ο
62	A Sustainable Tandem Catalysis Approach to Plant Oilâ€Based Polyols via Schenckâ€Ene Reaction and Epoxidation. European Journal of Lipid Science and Technology, 2018, 120, 1800015.	1.0	7
63	Merging CO ₂ -Based Building Blocks with Cobalt-Mediated Radical Polymerization for the Synthesis of Functional Poly(vinyl alcohol)s. Macromolecules, 2018, 51, 3379-3393.	2.2	18
64	Multicomponent reactions provide key molecules for secret communication. Nature Communications, 2018, 9, 1439.	5.8	164
65	Synthesis of Dimer Fatty Acid Methyl Esters by Catalytic Oxidation and Reductive Amination: An Efficient Route to Branched Polyamides. European Journal of Lipid Science and Technology, 2018, 120, 1700350.	1.0	10
66	A Combined Photochemical and Multicomponent Reaction Approach to Precision Oligomers. Chemistry - A European Journal, 2018, 24, 3413-3419.	1.7	37
67	Fats and Oils as Renewable Feedstock for the Chemical Industry. European Journal of Lipid Science and Technology, 2018, 120, 1700460.	1.0	3
68	Detailed Understanding of the DBU/CO ₂ Switchable Solvent System for Cellulose Solubilization and Derivatization. ACS Sustainable Chemistry and Engineering, 2018, 6, 1496-1503.	3.2	54
69	Data storage in sequence-defined macromolecules via multicomponent reactions. European Polymer Journal, 2018, 104, 32-38.	2.6	79
70	Biocompatible Polymeric Nanoparticles From Castor Oil Derivatives via Thiolâ€Ene Miniemulsion Polymerization. European Journal of Lipid Science and Technology, 2018, 120, 1700212.	1.0	30
71	Sustainable succinylation of cellulose in a CO ₂ -based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification. Green Chemistry, 2018, 20, 214-224.	4.6	62
72	Sequence-definition in stiff conjugated oligomers. Scientific Reports, 2018, 8, 17483.	1.6	18

#	Article	IF	CITATIONS
73	Fatty Acid Derived Renewable Platform Chemicals via Selective Oxidation Processes. ACS Sustainable Chemistry and Engineering, 2018, 6, 15170-15179.	3.2	9
74	On the direct use of CO ₂ in multicomponent reactions: introducing the Passerini four component reaction. RSC Advances, 2018, 8, 31490-31495.	1.7	7
75	Sustainable Transesterification of Cellulose with High Oleic Sunflower Oil in a DBU-CO ₂ Switchable Solvent. ACS Sustainable Chemistry and Engineering, 2018, 6, 8826-8835.	3.2	59
76	Surface Functionalization of Silicon, HOPG, and Graphite Electrodes: Toward an Artificial Solid Electrolyte Interface. ACS Applied Materials & amp; Interfaces, 2018, 10, 24172-24180.	4.0	20
77	Renewable Polyethers via GaBr 3 â€Catalyzed Reduction of Polyesters. Angewandte Chemie - International Edition, 2018, 57, 8775-8779.	7.2	17
78	Erneuerbare Polyether Ã1⁄4ber die GaBr 3 â€katalysierte Reduktion von Polyestern. Angewandte Chemie, 2018, 130, 8911-8915.	1.6	5
79	Highly efficient Tsuji–Trost allylation in water catalyzed by Pd-nanoparticles. Chemical Communications, 2017, 53, 5175-5178.	2.2	28
80	Synthesis of potential bisphenol A substitutes by isomerising metathesis of renewable raw materials. Green Chemistry, 2017, 19, 3051-3060.	4.6	76
81	Peptide array functionalization via the Ugi four-component reaction. Chemical Communications, 2017, 53, 5553-5556.	2.2	16
82	An Update on Isocyanide-Based Multicomponent Reactions in Polymer Science. Topics in Current Chemistry, 2017, 375, 66.	3.0	55
83	Metathesis Curing of Allylated Lignin and Different Plant Oils for the Preparation of Thermosetting Polymer Films with Tunable Mechanical Properties. Macromolecular Chemistry and Physics, 2017, 218, 1700177.	1.1	9
84	Catalytic Oxyfunctionalization of Methyl 10-undecenoate for the Synthesis of Step-Growth Polymers. Macromolecular Chemistry and Physics, 2017, 218, 1700153.	1.1	9
85	Recent Progress in the Design of Monodisperse, Sequence-Defined Macromolecules. Macromolecular Rapid Communications, 2017, 38, 1600711.	2.0	165
86	Poly(1,20-eicosanediyl 2,5-furandicarboxylate), a biodegradable polyester from renewable resources. European Polymer Journal, 2017, 90, 301-311.	2.6	45
87	Synthesis and Characterization of Epoxy Thermosetting Polymers from Glycidylated Organosolv Lignin and Bisphenol A. Macromolecular Chemistry and Physics, 2017, 218, 1600411.	1.1	37
88	Phase Segregation in Supramolecular Polymers Based on Telechelics Synthesized via Multicomponent Reactions. Macromolecular Chemistry and Physics, 2017, 218, 1700302.	1.1	4
89	Synthesis and unimolecular micellar behavior of amphiphilic star-shaped block copolymers obtained via the Passerini three component reaction. RSC Advances, 2017, 7, 45195-45199.	1.7	7
90	Combining Two Methods of Sequence Definition in a Convergent Approach: Scalable Synthesis of Highly Defined and Multifunctionalized Macromolecules. Chemistry - A European Journal, 2017, 23, 13906-13909.	1.7	29

#	Article	IF	CITATIONS
91	Bio-derived polymers for coating applications: comparing poly(limonene carbonate) and poly(cyclohexadiene carbonate). Polymer Chemistry, 2017, 8, 6099-6105.	1.9	76
92	Sequence-controlled molecular layers on surfaces by thiol–ene chemistry: synthesis and multitechnique characterization. Polymer Chemistry, 2017, 8, 5824-5828.	1.9	1
93	Aerobic oxidation of α-pinene catalyzed by homogeneous and MOF-based Mn catalysts. Applied Catalysis A: General, 2017, 546, 1-6.	2.2	33
94	Macromol. Rapid Commun. 9/2017. Macromolecular Rapid Communications, 2017, 38, .	2.0	0
95	Catalytic Transesterification of Starch with Plant Oils: A Sustainable and Efficient Route to Fatty Acid Starch Esters. ChemSusChem, 2017, 10, 182-188.	3.6	21
96	Synthesis of structurally diverse 3,4-dihydropyrimidin-2(1 <i>H</i>)-ones via sequential Biginelli and Passerini reactions. Beilstein Journal of Organic Chemistry, 2017, 13, 54-62.	1.3	18
97	An update on isocyanide-based multicomponent reactions in polymer science. Topics in Current Chemistry Collections, 2017, , 127-155.	0.2	6
98	Sustainable functionalization of cellulose and starch with diallyl carbonate in ionic liquids. Green Chemistry, 2017, 19, 3899-3907.	4.6	35
99	Selective formation of C ₃₆ â€dimer fatty acids via thiolâ€ene addition for copolyamide synthesis. European Journal of Lipid Science and Technology, 2016, 118, 1470-1474.	1.0	13
100	Eine skalierbare Synthese sequenzdefinierter Makromoleküle mit hohen Ausbeuten. Angewandte Chemie, 2016, 128, 1222-1225.	1.6	24
101	Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer. Applied Surface Science, 2016, 389, 942-951.	3.1	2
102	Catalytic copolymerization of methyl 9,10-epoxystearate and cyclic anhydrides under neat conditions. European Journal of Lipid Science and Technology, 2016, 118, 104-110.	1.0	20
103	Fats and oils as renewable feedstock for the chemical industry. European Journal of Lipid Science and Technology, 2016, 118, 1-2.	1.0	15
104	Renewability – a principle of utmost importance!. Green Chemistry, 2016, 18, 4800-4803.	4.6	41
105	Synthesis of polyacrylates from limonene by catalytic oxidation and multi-component reaction. European Polymer Journal, 2016, 83, 359-366.	2.6	12
106	Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomassâ€Derived Monomers and Polymers. Chemistry - A European Journal, 2016, 22, 11510-11521.	1.7	228
107	High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material. Nature Communications, 2016, 7, 11844.	5.8	49
108	High Glass Transition Temperature Renewable Polymers via Biginelli Multicomponent Polymerization. Macromolecular Rapid Communications, 2016, 37, 643-649.	2.0	80

#	Article	IF	CITATIONS
109	A Scalable and High‥ield Strategy for the Synthesis of Sequenceâ€Defined Macromolecules. Angewandte Chemie - International Edition, 2016, 55, 1204-1207.	7.2	140
110	Controlling molecular weight and polymer architecture during the Passerini three component step-growth polymerization. Polymer Chemistry, 2016, 7, 1857-1860.	1.9	37
111	Fluorescent Covalently Cross-Linked Cellulose Networks via Light-Induced Ligation. ACS Macro Letters, 2016, 5, 139-143.	2.3	32
112	Unique adhesive properties of pressure sensitive adhesives from plant oils. International Journal of Adhesion and Adhesives, 2016, 64, 65-71.	1.4	44
113	Sustainable allylation of organosolv lignin with diallyl carbonate and detailed structural characterization of modified lignin. Green Chemistry, 2016, 18, 197-207.	4.6	41
114	Sophorolipids: Expanding structural diversity by ringâ€opening crossâ€metathesis. European Journal of Lipid Science and Technology, 2015, 117, 217-228.	1.0	29
115	Synthesis of Modified Polycaprolactams Obtained from Renewable Resources. Macromolecular Chemistry and Physics, 2015, 216, 1972-1981.	1.1	12
116	Potentially biocompatible polyacrylamides derived by the Ugi four-component reaction. European Polymer Journal, 2015, 65, 313-324.	2.6	17
117	Acyclic triene metathesis (ATMET) miniemulsion polymerization of linseed oil produces polymer nanoparticles with comparable molecular weight to that of bulk reactions. European Journal of Lipid Science and Technology, 2015, 117, 235-241.	1.0	7
118	Fats and oils as renewable feedstock for the chemical industry. European Journal of Lipid Science and Technology, 2015, 117, 133-134.	1.0	1
119	Renewable, fluorescent, and thermoresponsive: cellulose copolymers via light-induced ligation in solution. Polymer Chemistry, 2015, 6, 2188-2191.	1.9	18
120	Renewable Polymers from Itaconic Acid by Polycondensation and Ring-Opening-Metathesis Polymerization. Macromolecules, 2015, 48, 1398-1403.	2.2	106
121	Base catalyzed sustainable synthesis of phenyl esters from carboxylic acids using diphenyl carbonate. RSC Advances, 2015, 5, 53155-53160.	1.7	11
122	A Photolithographic Approach to Spatially Resolved Cross-Linked Nanolayers. Langmuir, 2015, 31, 3242-3253.	1.6	5
123	Versatile side chain modification <i>via</i> isocyanide-based multicomponent reactions: tuning the LCST of poly(2-oxazoline)s. Polymer Chemistry, 2015, 6, 3828-3836.	1.9	39
124	Dual side chain control in the synthesis of novel sequence-defined oligomers through the Ugi four-component reaction. Polymer Chemistry, 2015, 6, 3201-3204.	1.9	85
125	Novel Insights into Pressureâ€Sensitive Adhesives Based on Plant Oils. Macromolecular Chemistry and Physics, 2015, 216, 1609-1618.	1.1	32
126	Organic carbonates: sustainable and environmentally-friendly ethylation, allylation, and benzylation reagents. Tetrahedron, 2015, 71, 293-300.	1.0	24

#	Article	IF	CITATIONS
127	A latent and controllable ruthenium-indenylidene catalyst for emulsion ROMP in water. European Polymer Journal, 2015, 62, 116-123.	2.6	15
128	Renewable polycarbonates and polyesters from 1,4-cyclohexadiene. Green Chemistry, 2015, 17, 300-306.	4.6	177
129	Passerini and Ugi Multicomponent Reactions in Polymer Science. Advances in Polymer Science, 2014, , 61-86.	0.4	40
130	Tuning the polarity of ADMET derived star-shaped polymers via thiol-ene chemistry. Polymer, 2014, 55, 5571-5575.	1.8	22
131	Stepâ€Growth Polymerization in the 21st Century. Macromolecular Chemistry and Physics, 2014, 215, 2135-2137.	1.1	18
132	Divergent Dendrimer Synthesis via the Passerini Three omponent Reaction and Olefin Crossâ€Metathesis. Macromolecular Rapid Communications, 2014, 35, 317-322.	2.0	44
133	Ugi Reactions with CO ₂ : Access to Functionalized Polyurethanes, Polycarbonates, Polyamides, and Polyhydantoins. Macromolecular Rapid Communications, 2014, 35, 1866-1871.	2.0	37
134	Oxa―and Thiazolidineâ€Containing Polymers Derived via the Asinger Fourâ€Component Reaction: the Ring Matters. Macromolecular Chemistry and Physics, 2014, 215, 412-420.	1.1	16
135	ADMET reactions in miniemulsion. Journal of Polymer Science Part A, 2014, 52, 1300-1305.	2.5	18
136	Sustainable polymers: reduced environmental impact, renewable raw materials and catalysis. Green Chemistry, 2014, 16, 1672.	4.6	29
137	Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters. Green Chemistry, 2014, 16, 3266.	4.6	74
138	Barium peroxide nanoparticles: synthesis, characterization and their use for actuating the luminol chemiluminescence. Journal of Materials Chemistry C, 2014, 2, 1513.	2.7	12
139	Passerini addition polymerization of an AB-type monomer – A convenient route to versatile polyesters. European Polymer Journal, 2014, 50, 150-157.	2.6	36
140	Diversely Substituted Polyamides: Macromolecular Design Using the Ugi Four-Component Reaction. Macromolecules, 2014, 47, 2774-2783.	2.2	139
141	Sequence Control in Polymer Chemistry through the Passerini Three omponent Reaction. Angewandte Chemie - International Edition, 2014, 53, 711-714.	7.2	243
142	Renewable coâ€polymers derived from castor oil and limonene. European Journal of Lipid Science and Technology, 2014, 116, 31-36.	1.0	35
143	Highly efficient oxyfunctionalization of unsaturated fatty acid esters: an attractive route for the synthesis of polyamides from renewable resources. Green Chemistry, 2014, 16, 1784-1788.	4.6	34
144	Sulfur-containing fatty acid-based plasticizers via thiol–ene addition and oxidation: synthesis and evaluation in PVC formulations. Green Chemistry, 2014, 16, 1883-1896.	4.6	40

#	Article	IF	CITATIONS
145	Fats and oils as renewable feedstock for the chemical industry. European Journal of Lipid Science and Technology, 2014, 116, 1-1.	1.0	10
146	Regioselective catalytic acetoxylation of limonene. Catalysis Science and Technology, 2014, 4, 2318-2325.	2.1	10
147	Temperature Responsive Cellulose- <i>graft</i> -Copolymers via Cellulose Functionalization in an Ionic Liquid and RAFT Polymerization. Biomacromolecules, 2014, 15, 2563-2572.	2.6	79
148	A more sustainable Wohl– <scp>Z</scp> iegler bromination: Versatile derivatization of unsaturated <scp>FAME</scp> s and synthesis of renewable polyamides. European Journal of Lipid Science and Technology, 2014, 116, 44-51.	1.0	19
149	Olefin cross-metathesis as a valuable tool for the preparation of renewable polyesters and polyamides from unsaturated fatty acid esters and carbamates. Green Chemistry, 2014, 16, 3335-3340.	4.6	57
150	Modified Poly(ε-caprolactone)s: An Efficient and Renewable Access via Thia-Michael Addition and Baeyer–Villiger Oxidation. Macromolecules, 2014, 47, 2842-2846.	2.2	33
151	Long-chain polyesters and polyamides from biochemically derived fatty acids. European Polymer Journal, 2014, 51, 159-166.	2.6	40
152	Multicomponent Reactions with a Convertible Isocyanide: Efficient and Versatile Grafting of ADMETâ€Derived Polymers. Macromolecular Chemistry and Physics, 2014, 215, 2207-2220.	1.1	23
153	The thiolâ€ene (click) reaction for the synthesis of plant oil derived polymers. European Journal of Lipid Science and Technology, 2013, 115, 41-54.	1.0	138
154	Tunable Polymers Obtained from Passerini Multicomponent Reaction Derived Acrylate Monomers. Macromolecules, 2013, 46, 6031-6037.	2.2	85
155	Self-metathesis of fatty acid methyl esters: full conversion by choosing the appropriate plant oil. RSC Advances, 2013, 3, 4927.	1.7	62
156	Ring-Opening Metathesis Polymerization of a Naturally Derived Macrocyclic Glycolipid. Macromolecules, 2013, 46, 3293-3300.	2.2	34
157	Renewable Aromatic–Aliphatic Copolyesters Derived from Rapeseed. Macromolecular Chemistry and Physics, 2013, 214, 1452-1464.	1.1	42
158	Acyclic Diene Metathesis Polymerization and Heck Polymer–Polymer Conjugation for the Synthesis of Starâ€shaped Block Copolymers. Macromolecular Rapid Communications, 2013, 34, 1381-1386.	2.0	23
159	Renewable polyamides and polyurethanes derived from limonene. Green Chemistry, 2013, 15, 370-380.	4.6	140
160	Introducing Catalytic Lossen Rearrangements: Sustainable Access to Carbamates and Amines. Advanced Synthesis and Catalysis, 2013, 355, 81-86.	2.1	64
161	Crossâ€metathesis versus palladiumâ€catalyzed CH activation: Acetoxy ester functionalization of unsaturated fatty acid methyl esters. European Journal of Lipid Science and Technology, 2013, 115, 76-85.	1.0	20
162	Fats and oils as renewable feedstock for the chemical industry. European Journal of Lipid Science and Technology, 2013, 115, 1-2.	1.0	0

#	Article	IF	CITATIONS
163	Renewable co-polymers derived from vanillin and fatty acid derivatives. European Polymer Journal, 2013, 49, 156-166.	2.6	93
164	Grafting onto a renewable unsaturated polyester via thiol–ene chemistry and cross-metathesis. European Polymer Journal, 2013, 49, 843-852.	2.6	40
165	Sustainable routes to polyurethane precursors. Green Chemistry, 2013, 15, 1431.	4.6	332
166	Renewable Nonâ€Isocyanate Based Thermoplastic Polyurethanes via Polycondensation of Dimethyl Carbamate Monomers with Diols. Macromolecular Rapid Communications, 2013, 34, 1569-1574.	2.0	102
167	Synthesis of Diverse Asymmetric α,ï‰â€Dienes Via the Passerini Threeâ€Component Reaction for Headâ€ŧoâ€⊺a ADMET Polymerization. Macromolecular Chemistry and Physics, 2013, 214, 2821-2828.	il _{1.1}	27
168	αâ€< scp>Arylation of saturated fatty acids. European Journal of Lipid Science and Technology, 2013, 115, 729-734.	1.0	2
169	Olefin Metathesis of Renewable Platform Chemicals. Topics in Organometallic Chemistry, 2012, , 1-44.	0.7	31
170	Plant Oilâ€Based Long hain C ₂₆ Monomers and Their Polymers. Macromolecular Chemistry and Physics, 2012, 213, 2220-2227.	1.1	76
171	Monomers and their polymers derived from saturated fatty acid methyl esters and dimethyl carbonate. Green Chemistry, 2012, 14, 2429.	4.6	33
172	A new approach for modular polymer–polymer conjugations via Heck coupling. Chemical Science, 2012, 3, 2607.	3.7	37
173	On the Polymerization Behavior of Telomers: Metathesis versus Thiol–Ene Chemistry. Macromolecules, 2012, 45, 1866-1878.	2.2	30
174	Fatty acid derived renewable polyamides via thiol–ene additions. Green Chemistry, 2012, 14, 2577.	4.6	85
175	TBD catalysis with dimethyl carbonate: a fruitful and sustainable alliance. Green Chemistry, 2012, 14, 1728.	4.6	95
176	Highly Orthogonal Functionalization of ADMET Polymers via Photo-Induced Diels–Alder Reactions. Macromolecules, 2012, 45, 5012-5019.	2.2	58
177	Sideâ€Chain Modification and "Grafting Onto―via Olefin Crossâ€Metathesis. Macromolecular Rapid Communications, 2012, 33, 2023-2028.	2.0	20
178	A novel polymerization approach via thiolâ€yne addition. Journal of Polymer Science Part A, 2012, 50, 1689-1695.	2.5	49
179	Initiation of Radical Chain Reactions of Thiol Compounds and Alkenes without any Added Initiator: Thiol atalyzed <i>cis</i> / <i>trans</i> Isomerization of Methyl Oleate. Chemistry - A European Journal, 2012, 18, 8201-8207.	1.7	39
180	Structurally Diverse Polyamides Obtained from Monomers Derived via the Ugi Multicomponent Reaction. Chemistry - A European Journal, 2012, 18, 5767-5776.	1.7	97

#	Article	IF	CITATIONS
181	Lowering the boiling point curve of biodiesel by crossâ€metathesis. European Journal of Lipid Science and Technology, 2012, 114, 55-62.	1.0	18
182	Fats and oils as renewable feedstock for the chemical industry. European Journal of Lipid Science and Technology, 2012, 114, 1-1.	1.0	2
183	Acyclic Triene Metathesis Polymerization of <i>Plukenetia Conophora</i> Oil: Branched Polymers by Direct Polymerization of Renewable Resources. Macromolecular Chemistry and Physics, 2012, 213, 87-96.	1.1	20
184	Synthesis of star- and block-copolymers using ADMET: head-to-tail selectivity during step-growth polymerization. Chemical Communications, 2011, 47, 1908-1910.	2.2	57
185	Introducing Multicomponent Reactions to Polymer Science: Passerini Reactions of Renewable Monomers. Journal of the American Chemical Society, 2011, 133, 1790-1792.	6.6	337
186	Acyclic dienemetathesis: a versatile tool for the construction of defined polymer architectures. Chemical Society Reviews, 2011, 40, 1404-1445.	18.7	262
187	Terpene-Based Renewable Monomers and Polymers via Thiol–Ene Additions. Macromolecules, 2011, 44, 7253-7262.	2.2	195
188	Thiol-ene vs. ADMET: a complementary approach to fatty acid-based biodegradable polymers. Green Chemistry, 2011, 13, 314.	4.6	84
189	Towards Sustainable Solution Polymerization: Biodiesel as a Polymerization Solvent. , 2011, , 143-161.		1
190	Copolymers derived from rapeseed derivatives via ADMET and thiol-ene addition. European Polymer Journal, 2011, 47, 1804-1816.	2.6	60
191	Polyurethanes from polyols obtained by ADMET polymerization of a castor oilâ€based diene: Characterization and shape memory properties. Journal of Polymer Science Part A, 2011, 49, 518-525.	2.5	37
192	Shape Memory Polyurethanes from Renewable Polyols Obtained by ATMET Polymerization of Clyceryl Triundecâ€10â€enoate and 10â€Undecenol. Macromolecular Chemistry and Physics, 2011, 212, 1392-1399.	1.1	31
193	Renewable Polyethylene Mimics Derived from Castor Oil. Macromolecular Rapid Communications, 2011, 32, 1357-1361.	2.0	48
194	Renewable Resources for Polymer Chemistry: A Sustainable Alternative?. Macromolecular Rapid Communications, 2011, 32, 1297-1298.	2.0	12
195	Poly-α,β-unsaturated aldehydes derived from castor oil via ADMET polymerization. European Journal of Lipid Science and Technology, 2011, 113, 31-38.	1.0	31
196	Cross-metathesis of unsaturated triglycerides with methyl acrylate: Synthesis of a dimeric metathesis product. European Journal of Lipid Science and Technology, 2011, 113, 39-45.	1.0	33
197	Fats and oils as renewable feedstock for the chemical industry. European Journal of Lipid Science and Technology, 2011, 113, 1-2.	1.0	12
198	The oleochemical feedstock wish list. European Journal of Lipid Science and Technology, 2011, 113, 1297-1298.	1.0	1

#	Article	IF	CITATIONS
199	Oils and Fats as Renewable Raw Materials in Chemistry. Angewandte Chemie - International Edition, 2011, 50, 3854-3871.	7.2	871
200	Plant oils: The perfect renewable resource for polymer science?!. European Polymer Journal, 2011, 47, 837-852.	2.6	532
201	4-Vinylbenzenesulfonic acid adduct of epoxidized soybean oil: Synthesis, free radical and ADMET polymerizations. European Polymer Journal, 2011, 47, 1467-1476.	2.6	16
202	Castor oil as a renewable resource for the chemical industry. European Journal of Lipid Science and Technology, 2010, 112, 10-30.	1.0	587
203	Fats and oils as renewable feedstock for the chemical industry. European Journal of Lipid Science and Technology, 2010, 112, 1-2.	1.0	4
204	Acyclic Triene Metathesis Oligo―and Polymerization of High Oleic Sun Flower Oil. Macromolecular Chemistry and Physics, 2010, 211, 854-862.	1.1	67
205	Studying and Suppressing Olefin Isomerization Side Reactions During ADMET Polymerizations. Macromolecular Rapid Communications, 2010, 31, 368-373.	2.0	71
206	Fatty Acid Derived Monomers and Related Polymers <i>Via</i> Thiolâ€ene (Click) Additions. Macromolecular Rapid Communications, 2010, 31, 1822-1826.	2.0	171
207	Phosphorusâ€containing renewable polyesterâ€polyols via ADMET polymerization: Synthesis, functionalization, and radical crosslinking. Journal of Polymer Science Part A, 2010, 48, 1649-1660.	2.5	63
208	Ringâ€opening metathesis polymerization of fatty acid derived monomers. Journal of Polymer Science Part A, 2010, 48, 5899-5906.	2.5	30
209	About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations. Beilstein Journal of Organic Chemistry, 2010, 6, 1149-1158.	1.3	20
210	A simple approach to reduce the environmental impact of olefinmetathesis reactions: a green and renewable solvent compared to solvent-free reactions. Green Chemistry, 2010, 12, 169-173.	4.6	32
211	Polymer Libraries: Preparation and Applications. Advances in Polymer Science, 2009, , 1-15.	0.4	13
212	A Designâ€ofâ€Experiments Approach for the Optimization and Understanding of the Crossâ€Metathesis Reaction of Methyl Ricinoleate with Methyl Acrylate. ChemSusChem, 2009, 2, 749-754.	3.6	36
213	Unsaturated PA X,20 from Renewable Resources via Metathesis and Catalytic Amidation. Macromolecular Chemistry and Physics, 2009, 210, 1019-1025.	1.1	108
214	Metathesis with Oleochemicals: New Approaches for the Utilization of Plant Oils as Renewable Resources in Polymer Science. Macromolecular Chemistry and Physics, 2009, 210, 1073-1079.	1.1	145
215	Fatty acid derived phosphorusâ€containing polyesters via acyclic diene metathesis polymerization. Journal of Polymer Science Part A, 2009, 47, 5760-5771.	2.5	64
216	Cross-metathesis reactions of allyl chloride with fatty acid methyl esters: Efficient synthesis of α,ï‰-difunctional chemical intermediates from renewable raw materials. Applied Catalysis A: General, 2009, 353, 32-35.	2.2	81

#	Article	IF	CITATIONS
217	Improving the selectivity for the synthesis of two renewable platform chemicals via olefin metathesis. Applied Catalysis A: General, 2009, 368, 158-162.	2.2	54
218	A Versatile Approach to Unimolecular Water-Soluble Carriers: ATRP of PEGMA with Hydrophobic Star-Shaped Polymeric Core Molecules as an Alternative for PEGylation. Macromolecules, 2009, 42, 1808-1816.	2.2	84
219	Use of a Renewable and Degradable Monomer to Study the Temperature-Dependent Olefin Isomerization during ADMET Polymerizations. Journal of the American Chemical Society, 2009, 131, 1664-1665.	6.6	114
220	Polymeric nanocontainers with high loading capacity of hydrophobic drugs. Soft Matter, 2009, 5, 1662.	1.2	46
221	Encapsulation and release by starâ€shaped block copolymers as unimolecular nanocontainers. Journal of Polymer Science Part A, 2008, 46, 650-660.	2.5	30
222	Acyclic Triene Metathesis Polymerization with Chain‣toppers: Molecular Weight Control in the Synthesis of Branched Polymers. Macromolecular Rapid Communications, 2008, 29, 1620-1625.	2.0	73
223	Cross-metathesis with fatty acid derivatives: Scope, challenges and perspectives. Lipid Technology, 2008, 20, 84-87.	0.3	9
224	Acyclic Diene Metathesis with a Monomer from Renewable Resources: Control of Molecular Weight and One‣tep Preparation of Block Copolymers. ChemSusChem, 2008, 1, 542-547.	3.6	118
225	Metathesis as a versatile tool in oleochemistry. European Journal of Lipid Science and Technology, 2008, 110, 797-804.	1.0	160
226	Polymers from renewable resources: Bulk ATRP of fatty alcoholâ€derived methacrylates. European Journal of Lipid Science and Technology, 2008, 110, 853-859.	1.0	44
227	Fats and oils as renewable feedstock for the chemical industry. European Journal of Lipid Science and Technology, 2008, 110, 787-787.	1.0	2
228	Cross-metathesis of oleyl alcohol with methyl acrylate: optimization of reaction conditions and comparison of their environmental impact. Green Chemistry, 2008, 10, 1099.	4.6	83
229	Pflanzenöle für die chemische Industrie. Nachrichten Aus Der Chemie, 2008, 56, 738-742.	0.0	3
230	Supramolecular Self-Assembled Ni(II), Fe(II), and Co(II) ABA Triblock Copolymers. Macromolecules, 2008, 41, 2771-2777.	2.2	61
231	Systematic Signature Engineering by Re-use of Snort Signatures. , 2008, , .		1
232	Two-Dimensional Self-Assembly of Linear Poly(ethylene oxide)-b-poly(Îμ-caprolactone) Copolymers at the Airâ~'Water Interface. Langmuir, 2007, 23, 2423-2429.	1.6	44
233	Statistical Approach To Understand MALDI-TOFMS Matrices:Â Discovery and Evaluation of New MALDI Matrices. Analytical Chemistry, 2007, 79, 863-869.	3.2	31
234	Plant oil renewable resources as green alternatives in polymer science. Chemical Society Reviews, 2007, 36, 1788.	18.7	1,288

#	Article	IF	CITATIONS
235	Application possibilities of preparative size exclusion chromatography to analytical problems in polymer science. E-Polymers, 2007, 7, .	1.3	0
236	New Insights into Nickel(II), Iron(II), and Cobalt(II) Bis-Complex-Based Metallo-Supramolecular Polymers. Macromolecular Chemistry and Physics, 2007, 208, 679-689.	1.1	58
237	Transport of Guest Molecules by Unimolecular Micelles Evidenced in Analytical Ultracentrifugation Experiments. Macromolecular Rapid Communications, 2007, 28, 1429-1433.	2.0	2
238	Cross-metathesis of fatty acid derivatives with methyl acrylate: renewable raw materials for the chemical industry. Green Chemistry, 2007, 9, 1356.	4.6	172
239	Tuning the Hydrophilicity of Gold Nanoparticles Templated in Star Block Copolymers. Langmuir, 2006, 22, 6690-6695.	1.6	67
240	Selected successful approaches in combinatorial materials research. Soft Matter, 2006, 2, 371.	1.2	12
241	Star-shaped block copolymer stabilized palladium nanoparticles for efficient catalytic Heck cross-coupling reactions. Journal of Materials Chemistry, 2006, 16, 3001.	6.7	68
242	Langmuir and Langmuirâ^'Blodgett Films of Poly(ethylene oxide)-b-Poly(ε-caprolactone) Star-Shaped Block Copolymers. Langmuir, 2006, 22, 9264-9271.	1.6	47
243	Supramolecular ABA Triblock Copolymers via a Polycondensation Approach:Â Synthesis, Characterization, and Micelle Formation. Macromolecules, 2006, 39, 1569-1576.	2.2	60
244	First GPC results of terpyridine based chain extended supramolecular polymers: comparison with viscosity and analytical ultracentrifugation. E-Polymers, 2006, 6, .	1.3	7
245	Iridium(III) Complexes with PEO and PS Polymer Macroligands and Light-Emitting Properties: Synthesis and Characterization. Macromolecular Chemistry and Physics, 2005, 206, 989-997.	1.1	33
246	PEO-b-PCL Block Copolymers: Synthesis, Detailed Characterization, and Selected Micellar Drug Encapsulation Behavior. Macromolecular Rapid Communications, 2005, 26, 1918-1924.	2.0	89
247	Combinatorial and high-throughput approaches in polymer science. Measurement Science and Technology, 2005, 16, 203-211.	1.4	50
248	Synthesis and characterization of 4- and 6-arm star-shaped poly(Î μ -caprolactone)s. E-Polymers, 2005, 5, .	1.3	0
249	Integration of MALDI-TOFMS as high-throughput screening tool into the workflow of combinatorial polymer research. Review of Scientific Instruments, 2005, 76, 062211.	0.6	16
250	Accelerating the Living Polymerization of 2-Nonyl-2-oxazoline by Implementing a Microwave Synthesizer into a High-Throughput Experimentation Workflow. ACS Combinatorial Science, 2005, 7, 10-13.	3.3	73
251	Combinatorial Evaluation of the Hostâ^'Guest Chemistry of Star-Shaped Block Copolymers. ACS Combinatorial Science, 2005, 7, 356-359.	3.3	18
252	Synthesis of Terpyridine-Terminated Polymers by Anionic Polymerization. Macromolecules, 2005, 38, 10388-10396.	2.2	32

#	Article	IF	CITATIONS
253	Investigation of the Living Cationic Ring-Opening Polymerization of 2-Methyl-, 2-Ethyl-, 2-Nonyl-, and 2-Phenyl-2-oxazoline in a Single-Mode Microwave Reactorâ€. Macromolecules, 2005, 38, 5025-5034.	2.2	264
254	Star-Block Copolymers as Templates for the Preparation of Stable Gold Nanoparticles. Langmuir, 2005, 21, 7995-8000.	1.6	96
255	The Introduction of High-Throughput Experimentation Methods for Suzuki–Miyaura Coupling Reactions in University Education. Journal of Chemical Education, 2005, 82, 1693.	1.1	18
256	Fluorescent sensing of transition metal ions based on the encapsulation of dithranol in a polymeric core shell architecture. Chemical Communications, 2005, , 4610.	2.2	60
257	A Novel Light-Emitting Mixed-Ligand Iridium(III) Complex With a Polymeric Terpyridine-PEG Macroligand: Synthesis And Characterization. Materials Research Society Symposia Proceedings, 2004, 846, DD11.7.1.	0.1	0
258	Novel iridium complexes with polymer side-chains. Materials Research Society Symposia Proceedings, 2004, 846, DD4.4.1.	0.1	0
259	Automated parallel investigations/optimizations of the reversible addition-fragmentation chain transfer polymerization of methyl methacrylate. Journal of Polymer Science Part A, 2004, 42, 5775-5783.	2.5	57
260	Combinatorial Methods, Automated Synthesis and High-Throughput Screening in Polymer Research: The Evolution Continues. Macromolecular Rapid Communications, 2004, 25, 21-33.	2.0	116
261	A Mixed Ruthenium Polypyridyl Complex Containing a PEG-Bipyridine Macroligand. Macromolecular Rapid Communications, 2004, 25, 793-798.	2.0	36
262	A Novel Light-Emitting Mixed-Ligand Iridium(III) Complex with a Terpyridine-Poly(ethylene glycol) Macroligand. Macromolecular Rapid Communications, 2004, 25, 1491-1496.	2.0	45
263	Combinatorial Synthesis of Star-Shaped Block Copolymers:  Hostâ^'Guest Chemistry of Unimolecular Reversed Micelles. Journal of the American Chemical Society, 2004, 126, 11517-11521.	6.6	113
264	Combinatorial polymer research and high-throughput experimentation: powerful tools for the discovery and evaluation of new materials. Journal of Materials Chemistry, 2004, 14, 3289.	6.7	51
265	Relative binding strength of terpyridine model complexes under matrix-assisted laser desorption/ionization mass spectrometry conditions. Journal of Mass Spectrometry, 2003, 38, 510-516.	0.7	78
266	Characterization of Defined Metal-Containing Supramolecular Block Copolymers. Macromolecular Rapid Communications, 2003, 24, 852-857.	2.0	74
267	Living Cationic Polymerizations Utilizing an Automated Synthesizer: High-Throughput Synthesis of Polyoxazolines. Macromolecular Rapid Communications, 2003, 24, 92-97.	2.0	71
268	Combinatorial Methods, Automated Synthesis and High-Throughput Screening in Polymer Research: Past and Present. Macromolecular Rapid Communications, 2003, 24, 15-32.	2.0	178
269	Instrumentation for Combinatorial and High-Throughput Polymer Research: A Short Overview. Macromolecular Rapid Communications, 2003, 24, 33-46.	2.0	55
270	Terpyridine-modified poly(vinyl chloride): Possibilities for supramolecular grafting and crosslinking. Journal of Polymer Science Part A, 2003, 41, 2964-2973.	2.5	30

#	Article	IF	CITATIONS
271	New soluble functional polymers by free-radical copolymerization of methacrylates and bipyridine ruthenium complexes. Journal of Polymer Science Part A, 2003, 41, 3954-3964.	2.5	32
272	Automated multiple-layer spotting for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of synthetic polymers utilizing ink-jet printing technology. Rapid Communications in Mass Spectrometry, 2003, 17, 2349-2353.	0.7	30
273	Evaluation of a new multiple-layer spotting technique for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of synthetic polymers. Rapid Communications in Mass Spectrometry, 2003, 17, 713-716.	0.7	60
274	Automated MALDI-TOF-MS Sample Preparation in Combinatorial Polymer Research. ACS Combinatorial Science, 2003, 5, 369-374.	3.3	41
275	Combinatorial methods and high-throughput experimentation in synthetic polymer chemistry. Materials Research Society Symposia Proceedings, 2003, 804, 7.	0.1	0
276	REAÇÕES DE POLIMERIZAĂ‡ĂƒO VIA METĂŦESE DE DIENO ACĂCLICO (ADMET) EM MINIEMULSĂƒO. , 0, , .		0
277	RAFT Polymerisation of a Renewable Ricinoleic Acidâ€Derived Monomer and Subsequent Postâ€Polymerisation Modification via the Biginelliâ€3â€Component Reaction. Macromolecular Chemistry and Physics. 0. – 2100360	1.1	3