Mark H Rummeli

List of Publications by Citations

Source: https://exaly.com/author-pdf/4525198/mark-h-rummeli-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15,817 65 306 117 h-index g-index citations papers 10.6 18,333 6.7 319 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
306	Applications of 2D MXenes in energy conversion and storage systems. <i>Chemical Society Reviews</i> , 2019 , 48, 72-133	58.5	878
305	Can graphene be used as a substrate for Raman enhancement?. Nano Letters, 2010, 10, 553-61	11.5	771
304	Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. <i>Advanced Materials</i> , 2011 , 23, 1020-4	24	653
303	Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. <i>ACS Nano</i> , 2013 , 7, 8963-71	16.7	586
302	Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. <i>Nano Letters</i> , 2014 , 14, 6016-22	11.5	545
301	Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. <i>Nature Communications</i> , 2015 , 6, 7393	17.4	376
300	Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. <i>Science Bulletin</i> , 2017 , 62, 1074-1080	10.6	326
299	Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. <i>ACS Nano</i> , 2010 , 4, 1299-304	16.7	285
298	Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano, 2010 , 4, 420	06-1.9	279
297	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. <i>Advanced Energy Materials</i> , 2018 , 8, 1702093	21.8	272
296	Free-standing single-atom-thick iron membranes suspended in graphene pores. <i>Science</i> , 2014 , 343, 122	.833 <i>2</i> 3	223
295	Synthesis challenges for graphene industry. <i>Nature Materials</i> , 2019 , 18, 520-524	27	217
294	Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator. <i>Advanced Materials</i> , 2015 , 27, 5210-6	24	215
293	Direct imaging of rotational stacking faults in few layer graphene. Nano Letters, 2009, 9, 102-6	11.5	204
292	Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. <i>Nature Communications</i> , 2011 , 2, 522	17.4	201
291	Structural transformations in graphene studied with high spatial and temporal resolution. <i>Nature Nanotechnology</i> , 2009 , 4, 500-4	28.7	191
290	A growth mechanism for free-standing vertical graphene. <i>Nano Letters</i> , 2014 , 14, 3064-71	11.5	182

(2018-2013)

289	van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. <i>ACS Nano</i> , 2013 , 7, 385-95	16.7	182
288	Scalable Seashell-Based Chemical Vapor Deposition Growth of Three-Dimensional Graphene Foams for Oil-Water Separation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6360-3	16.4	177
287	Extremely Weak van der Waals Coupling in Vertical ReS2 Nanowalls for High-Current-Density Lithium-Ion Batteries. <i>Advanced Materials</i> , 2016 , 28, 2616-23	24	169
286	Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. <i>Chemical Reviews</i> , 2018 , 118, 9281-9343	68.1	160
285	Wearable energy sources based on 2D materials. <i>Chemical Society Reviews</i> , 2018 , 47, 3152-3188	58.5	158
284	Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. <i>Small</i> , 2013 , 9, 1316-20	11	157
283	Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications. <i>Nano Letters</i> , 2015 , 15, 5846-54	11.5	152
282	Carbon nanostructures as multi-functional drug delivery platforms. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 401-428	7.3	149
281	Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. <i>Nano Research</i> , 2015 , 8, 3164-3176	10	131
280	Direct growth of high-quality graphene on high-ldielectric SrTiOlsubstrates. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6574-7	16.4	119
279	Size and shape control of colloidal copper(I) sulfide nanorods. ACS Nano, 2012, 6, 5889-96	16.7	118
278	Novel catalysts, room temperature, and the importance of oxygen for the synthesis of single-walled carbon nanotubes. <i>Nano Letters</i> , 2005 , 5, 1209-15	11.5	116
277	Direct Growth of MoS[h-BN Heterostructures via a Sulfide-Resistant Alloy. ACS Nano, 2016, 10, 2063-70	16.7	115
276	Graphene: Piecing it together. Advanced Materials, 2011 , 23, 4471-90	24	115
275	2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction. <i>Nano Energy</i> , 2017 , 33, 356-362	17.1	109
274	Tailoring N-Doped Single and Double Wall Carbon Nanotubes from a Nondiluted Carbon/Nitrogen Feedstock. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 2879-2884	3.8	107
273	Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes. <i>Advanced Materials</i> , 2020 , 32, e2003425	24	106
272	Biotemplating Growth of Nepenthes-like N-Doped Graphene as a Bifunctional Polysulfide Scavenger for Li-S Batteries. <i>ACS Nano</i> , 2018 , 12, 10240-10250	16.7	104

271	Three-dimensional nanostructured graphene: Synthesis and energy, environmental and biomedical applications. <i>Synthetic Metals</i> , 2017 , 234, 53-85	3.6	103
270	CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography. <i>Scientific Reports</i> , 2013 , 3, 1238	4.9	102
269	Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture. <i>Advanced Materials</i> , 2015 , 27, 7839-46	24	102
268	Twinned growth behaviour of two-dimensional materials. <i>Nature Communications</i> , 2016 , 7, 13911	17.4	101
267	Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. <i>Chemical Society Reviews</i> , 2018 , 47, 3018-3036	58.5	98
266	Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. <i>Carbon</i> , 2014 , 72, 372-380	10.4	98
265	Hierarchical Carbide-Derived Carbon Foams with Advanced Mesostructure as a Versatile Electrochemical Energy-Storage Material. <i>Advanced Energy Materials</i> , 2014 , 4, 1300645	21.8	90
264	Towards super-clean graphene. <i>Nature Communications</i> , 2019 , 10, 1912	17.4	89
263	In Situ Observations of Free-Standing Graphene-like Mono- and Bilayer ZnO Membranes. <i>ACS Nano</i> , 2015 , 9, 11408-13	16.7	89
262	Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO by Chemical Vapor Deposition. <i>ACS Nano</i> , 2017 , 11, 1946-1956	16.7	87
261	Evolutionary Chlorination of Graphene: From Charge-Transfer Complex to Covalent Bonding and Nonbonding. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 844-850	3.8	87
2 60	Oxide-driven carbon nanotube growth in supported catalyst CVD. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15772-3	16.4	87
259	Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 20973-7	3.4	86
258	Investigating the graphitization mechanism of SiO(2) nanoparticles in chemical vapor deposition. <i>ACS Nano</i> , 2009 , 3, 4098-104	16.7	81
257	Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 15641-6	11.5	8o
256	Direct growth of ultrafast transparent single-layer graphene defoggers. Small, 2015, 11, 1840-6	11	78
255	Investigating the diameter-dependent stability of single-walled carbon nanotubes. <i>ACS Nano</i> , 2009 , 3, 1557-63	16.7	76
254	Liquid Metal: An Innovative Solution to Uniform Graphene Films. <i>Chemistry of Materials</i> , 2014 , 26, 3637-	-3643	75

253	Atomic structure of interconnected few-layer graphene domains. ACS Nano, 2011, 5, 6610-8	16.7	73	
252	Stranski-Krastanov and Volmer-Weber CVD Growth Regimes To Control the Stacking Order in Bilayer Graphene. <i>Nano Letters</i> , 2016 , 16, 6403-6410	11.5	73	
251	Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms. <i>Advanced Materials</i> , 2019 , 31, e1803639	24	73	
250	Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing. <i>Scientific Reports</i> , 2013 , 3,	4.9	72	
249	Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. <i>Nature Communications</i> , 2016 , 7, 13440	17.4	71	
248	Synthesis of carbon nanotubes with and without catalyst particles. <i>Nanoscale Research Letters</i> , 2011 , 6, 303	5	70	
247	High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. <i>Scientific Reports</i> , 2013 , 3, 2670	4.9	69	
246	Recent Progress on Two-Dimensional Materials. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2021 , 2108017-0	3.8	69	
245	Supercritical carbon dioxide anchored FeDIhanoparticles on graphene foam and lithium battery performance. <i>ACS Applied Materials & Samp; Interfaces</i> , 2014 , 6, 22527-33	9.5	68	
244	Shedding light on the crystallographic etching of multi-layer graphene at the atomic scale. <i>Nano Research</i> , 2009 , 2, 695-705	10	68	
243	Confined crystals of the smallest phase-change material. <i>Nano Letters</i> , 2013 , 13, 4020-7	11.5	65	
242	Synthesis, characterization, and electrical properties of nitrogen-doped single-walled carbon nanotubes with different nitrogen content. <i>Diamond and Related Materials</i> , 2010 , 19, 1199-1206	3.5	65	
241	Graphene-Like ZnO: A Mini Review. <i>Crystals</i> , 2016 , 6, 100	2.3	64	
240	Scalable Salt-Templated Synthesis of Nitrogen-Doped Graphene Nanosheets toward Printable Energy Storage. <i>ACS Nano</i> , 2019 , 13, 7517-7526	16.7	60	
239	Nanosized carbon black combined with Ni2O3 as "universal" catalysts for synergistically catalyzing carbonization of polyolefin wastes to synthesize carbon nanotubes and application for supercapacitors. <i>Environmental Science & Environmental Science & Camp; Technology</i> , 2014 , 48, 4048-55	10.3	60	
238	CVD growth of 1D and 2D sp2 carbon nanomaterials. <i>Journal of Materials Science</i> , 2016 , 51, 640-667	4.3	59	
237	Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	59	
236	A one step approach to B-doped single-walled carbon nanotubes. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5676		59	

235	The catalytic potential of high-ldielectrics for graphene formation. <i>Applied Physics Letters</i> , 2011 , 98, 073110	3.4	57
234	Seed-Assisted Growth of Single-Crystalline Patterned Graphene Domains on Hexagonal Boron Nitride by Chemical Vapor Deposition. <i>Nano Letters</i> , 2016 , 16, 6109-6116	11.5	56
233	Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications. <i>ACS Nano</i> , 2016 , 10, 11136-11144	16.7	56
232	Catalyst volume to surface area constraints for nucleating carbon nanotubes. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 8234-41	3.4	55
231	Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials. <i>ACS Nano</i> , 2019 , 13, 8312-8319	16.7	54
230	Switching Vertical to Horizontal Graphene Growth Using Faraday Cage-Assisted PECVD Approach for High-Performance Transparent Heating Device. <i>Advanced Materials</i> , 2018 , 30, 1704839	24	53
229	High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber. <i>Scientific Reports</i> , 2016 , 6, 24220	4.9	53
228	On the Role of Vapor Trapping for Chemical Vapor Deposition (CVD) Grown Graphene over Copper. <i>Chemistry of Materials</i> , 2013 , 25, 4861-4866	9.6	52
227	Oxidation as A Means to Remove Surface Contaminants on Cu Foil Prior to Graphene Growth by Chemical Vapor Deposition. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 13363-13368	3.8	52
226	Amorphous carbon under 80 kV electron irradiation: a means to make or break graphene. <i>Advanced Materials</i> , 2012 , 24, 5630-5	24	52
225	Programmable sub-nanometer sculpting of graphene with electron beams. ACS Nano, 2012, 6, 10327-3	416.7	49
224	Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping. <i>Nature Communications</i> , 2015 , 6, 8935	17.4	48
223	Isotope-Engineered Single-Wall Carbon Nanotubes; A Key Material for Magnetic Studies. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4094-4098	3.8	48
222	Single-wall-carbon-nanotube/single-carbon-chain molecular junctions. <i>Physical Review B</i> , 2010 , 81,	3.3	47
221	Examining co-based nanocrystals on graphene using low-voltage aberration-corrected transmission electron microscopy. <i>ACS Nano</i> , 2010 , 4, 470-6	16.7	47
220	A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 2522-2529	7-3	46
219	A universal transfer route for graphene. <i>Nanoscale</i> , 2014 , 6, 889-96	7.7	46
218	CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms. <i>Small</i> , 2012 , 8, 1973-92	11	46

(2015-2021)

217	A review of recent developments in Si/C composite materials for Li-ion batteries. <i>Energy Storage Materials</i> , 2021 , 34, 735-754	19.4	46
216	Direct Synthesis of Few-Layer Graphene on NaCl Crystals. <i>Small</i> , 2015 , 11, 6302-8	11	45
215	pH-dependent release of doxorubicin from fast photo-cross-linkable polymersomes based on benzophenone units. <i>Chemistry - A European Journal</i> , 2012 , 18, 12227-31	4.8	45
214	Nanoengineered Catalyst Particles as a Key for Tailor-Made Carbon Nanotubes. <i>Chemistry of Materials</i> , 2007 , 19, 5006-5009	9.6	45
213	Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth. <i>ACS Nano</i> , 2010 , 4, 1146-52	16.7	44
212	Isotropic Growth of Graphene toward Smoothing Stitching. ACS Nano, 2016, 10, 7189-96	16.7	43
211	Large-Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14446-14451	16.4	43
210	Ultra-smooth glassy graphene thin films for flexible transparent circuits. Science Advances, 2016, 2, e16	50145.34	43
209	Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures. <i>ACS Nano</i> , 2019 , 13, 978-995	16.7	42
208	Ultrafast Self-Limited Growth of Strictly Monolayer WSe Crystals. <i>Small</i> , 2016 , 12, 5741-5749	11	42
207	Atomic resolution imaging of the edges of catalytically etched suspended few-layer graphene. <i>ACS Nano</i> , 2011 , 5, 1975-83	16.7	42
206	Natural Biopolymers for Flexible Sensing and Energy Devices. <i>Chinese Journal of Polymer Science</i> (English Edition), 2020 , 38, 459-490	3.5	41
205	Direct Chemical Vapor Deposition Growth of Graphene on Insulating Substrates. <i>ChemNanoMat</i> , 2016 , 2, 9-18	3.5	41
204	Bandgap tuning of two-dimensional materials by sphere diameter engineering. <i>Nature Materials</i> , 2020 , 19, 528-533	27	40
203	Few-layer graphene shells and nonmagnetic encapsulates: a versatile and nontoxic carbon nanomaterial. <i>ACS Nano</i> , 2013 , 7, 10552-62	16.7	40
202	High-Quality Double-Walled Carbon Nanotubes Grown by a Cold-Walled Radio Frequency Chemical Vapor Deposition Process. <i>Chemistry of Materials</i> , 2008 , 20, 3466-3472	9.6	40
201	Self-Aligned Single-Crystalline Hexagonal Boron Nitride Arrays: Toward Higher Integrated Electronic Devices. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500223	6.4	38
200	Low voltage transmission electron microscopy of graphene. <i>Small</i> , 2015 , 11, 515-42	11	37

199	Universal Substrate-Trapping Strategy To Grow Strictly Monolayer Transition Metal Dichalcogenides Crystals. <i>Chemistry of Materials</i> , 2017 , 29, 6095-6103	9.6	36
198	Revealing the Small-Bundle Internal Structure of Vertically Aligned Single-Walled Carbon Nanotube Films [] <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17861-17864	3.8	36
197	Edge-to-Edge Oriented Self-Assembly of ReS2 Nanoflakes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11101-4	16.4	35
196	Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications. <i>Advanced Functional Materials</i> , 2019 , 29, 1904457	15.6	35
195	Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2014 , 1840, 160-9	4	35
194	One-dimensional confined motion of single metal atoms inside double-walled carbon nanotubes. <i>Physical Review Letters</i> , 2009 , 102, 195504	7.4	32
193	Examining the Edges of Multi-Layer Graphene Sheets. <i>Chemistry of Materials</i> , 2009 , 21, 2418-2421	9.6	32
192	Catalyst size dependencies for carbon nanotube synthesis. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 3911-3915	1.3	32
191	Lattice expansion in seamless bilayer graphene constrictions at high bias. <i>Nano Letters</i> , 2012 , 12, 4455-	911.5	31
190	The polycyclic aromatic hydrocarbon concentrations in soils in the Region of Valasske Mezirici, the Czech Republic. <i>Geochemical Transactions</i> , 2009 , 10, 12	3	31
189	Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. <i>Nature Communications</i> , 2021 , 12, 2391	17.4	31
188	Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Dichalcogenides. <i>Chemistry of Materials</i> , 2017 , 29, 4641-4644	9.6	30
187	Copper-Containing Carbon Feedstock for Growing Superclean Graphene. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7670-7674	16.4	30
186	Catalyst poisoning by amorphous carbon during carbon nanotube growth: fact or fiction?. <i>ACS Nano</i> , 2011 , 5, 8928-34	16.7	29
185	Theoretical Insight into High-Efficiency Triple-Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides. <i>Solar Rrl</i> , 2021 , 5, 2000800	7.1	29
184	Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. <i>Nano Research</i> , 2016 , 9, 3048-3055	10	28
183	Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. Journal of Electroanalytical Chemistry, 2013 , 688, 243-248	4.1	28
182	Human-Like Sensing and Reflexes of Graphene-Based Films. <i>Advanced Science</i> , 2016 , 3, 1600130	13.6	28

(2010-2015)

181	Direct synthesis of graphene from adsorbed organic solvent molecules over copper. <i>RSC Advances</i> , 2015 , 5, 60884-60891	3.7	27	
180	Confirming the Dual Role of Etchants during the Enrichment of Semiconducting Single Wall Carbon Nanotubes by Chemical Vapor Deposition. <i>Chemistry of Materials</i> , 2015 , 27, 5964-5973	9.6	27	
179	Single Cr atom catalytic growth of graphene. <i>Nano Research</i> , 2018 , 11, 2405-2411	10	27	
178	Insights into the Early Growth of Homogeneous Single-Layer Graphene over NiMo Binary Substrates. <i>Chemistry of Materials</i> , 2013 , 25, 3880-3887	9.6	27	
177	The use of aliphatic alcohol chain length to control the nitrogen type and content in nitrogen doped carbon nanotubes. <i>Carbon</i> , 2013 , 52, 316-325	10.4	27	
176	The formation of stacked-cup carbon nanotubes using chemical vapor deposition from ethanol over silica. <i>Carbon</i> , 2010 , 48, 3175-3181	10.4	27	
175	Unveiling the Atomic Structure of Single-Wall Boron Nanotubes. <i>Advanced Functional Materials</i> , 2014 , 24, 4127-4134	15.6	26	
174	Electron paramagnetic resonance investigation of purified catalyst-free single-walled carbon nanotubes. <i>ACS Nano</i> , 2010 , 4, 7708-16	16.7	26	
173	Enhancement of the structure stability of MOF-5 confined to multiwalled carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2664-2668	1.3	26	
172	Preparation of organovermiculites using HDTMA: structure and sorptive properties using naphthalene. <i>Journal of Colloid and Interface Science</i> , 2008 , 327, 341-7	9.3	26	
171	Graphene Glass Inducing Multidomain Orientations in Cholesteric Liquid Crystal Devices toward Wide Viewing Angles. <i>ACS Nano</i> , 2018 , 12, 6443-6451	16.7	26	
170	Li-storage performance of binder-free and flexible iron fluoride@graphene cathodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23930-23935	13	25	
169	Carbon-nanotube-based stimuli-responsive controlled-release system. <i>Chemistry - A European Journal</i> , 2011 , 17, 4454-9	4.8	25	
168	Structural distortions in few-layer graphene creases. <i>ACS Nano</i> , 2011 , 5, 9984-91	16.7	25	
167	Graphene synthesis: On-the-spot growth. <i>Nature Materials</i> , 2016 , 15, 9-10	27	24	
166	In situ observations of self-repairing single-walled carbon nanotubes. <i>Physical Review B</i> , 2010 , 81,	3.3	24	
165	Examining the stability of folded graphene edges against electron beam induced sputtering with atomic resolution. <i>Nanotechnology</i> , 2010 , 21, 325702	3.4	24	
164	High-performance field effect transistors from solution processed carbon nanotubes. <i>ACS Nano</i> , 2010 , 4, 6659-64	16.7	24	

163	Capturing the motion of molecular nanomaterials encapsulated within carbon nanotubes with ultrahigh temporal resolution. <i>ACS Nano</i> , 2009 , 3, 3037-44	16.7	24
162	Resonant Raman spectroscopy on enriched 13C carbon nanotubes. <i>Carbon</i> , 2011 , 49, 4719-4723	10.4	24
161	Chemical vapor deposition of functionalized single-walled carbon nanotubes with defined nitrogen doping. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4051-4055	1.3	24
160	Highly Conductive Nitrogen-Doped Graphene Grown on Glass toward Electrochromic Applications. <i>ACS Applied Materials & District Material</i>	9.5	24
159	Phosphorus-Based Composites as Anode Materials for Advanced Alkali Metal Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2004648	15.6	23
158	New Frontiers in Electron Beam-Driven Chemistry in and around Graphene. <i>Advanced Materials</i> , 2019 , 31, e1800715	24	22
157	CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiO(x). <i>ACS Nano</i> , 2014 , 8, 9224-32	16.7	22
156	Size-dependent nanographene oxide as a platform for efficient carboplatin release. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 6107-6114	7.3	22
155	Understanding high-yield catalyst-free growth of horizontally aligned single-walled carbon nanotubes nucleated by activated C60 species. <i>ACS Nano</i> , 2012 , 6, 10825-34	16.7	22
154	On the catalytic hydrogenation of graphite for graphene nanoribbon fabrication. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 2540-2544	1.3	22
153	Graphene Coating of Silicon Nanoparticles with CO2 -Enhanced Chemical Vapor Deposition. <i>Small</i> , 2016 , 12, 658-67	11	22
152	Controllable Sliding Transfer of Wafer-Size Graphene. <i>Advanced Science</i> , 2016 , 3, 1600006	13.6	21
151	Dominantly epitaxial growth of graphene on Ni (1 1 1) substrate. <i>Applied Surface Science</i> , 2014 , 314, 490	0 49 9	21
150	Graphene transfer methods: A review. <i>Nano Research</i> , 2021 , 14, 3756	10	21
149	Growth of Uniform Monolayer Graphene Using Iron-Group Metals via the Formation of an Antiperovskite Layer. <i>Chemistry of Materials</i> , 2015 , 27, 8230-8236	9.6	20
148	Self-assembly formation of multi-walled carbon nanotubes on gold surfaces. <i>Nanoscale</i> , 2010 , 2, 2835-4	0 7.7	20
147	Synergized Multimetal Oxides with Amorphous/Crystalline Heterostructure as Efficient Electrocatalysts for Lithium Dxygen Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100110	21.8	20
146	Thermal conductivity of mechanically joined semiconducting/metal nanomembrane superlattices. Nano Letters, 2014, 14, 2387-93	11.5	19

145	Advances and Trends in Chemically Doped Graphene. Advanced Materials Interfaces, 2020, 7, 2000999	4.6	19
144	Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents. <i>Scientific Reports</i> , 2016 , 6, 26208	4.9	18
143	Coral-Inspired Nanoengineering Design for Long-Cycle and Flexible Lithium-Ion Battery Anode. <i>ACS Applied Materials & Design Frances</i> , 2016 , 8, 9185-93	9.5	18
142	Electroless copper deposition on (3-mercaptopropyl)triethoxysilane-coated silica and alumina nanoparticles. <i>Electrochimica Acta</i> , 2013 , 114, 521-526	6.7	18
141	Novel catalysts for low temperature synthesis of single wall carbon nanotubes. <i>Physica Status Solidi</i> (B): Basic Research, 2006 , 243, 3101-3105	1.3	18
140	Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics. <i>Nano-Micro Letters</i> , 2021 , 13, 143	19.5	18
139	Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1902024	4.6	17
138	Facile graphitization of silicon nano-particles with ethanol based chemical vapor deposition. <i>Nano Structures Nano Objects</i> , 2018 , 16, 38-44	5.6	17
137	Amphiphilic O-functionalized calix[4]resocinarenes with tunable structural behavior. <i>RSC Advances</i> , 2014 , 4, 9912	3.7	17
136	Multi-wall carbon nanotubes & vehicle for targeted Irinotecan drug delivery. <i>Physica Status Solidi</i> (B): Basic Research, 2010 , 247, 2673-2677	1.3	17
135	Optimizing substrate surface and catalyst conditions for high yield chemical vapor deposition grown epitaxially aligned single-walled carbon nanotubes. <i>Carbon</i> , 2011 , 49, 5029-5037	10.4	16
134	Raman spectroscopy study on concentrated acid treated carbon nanotubes. <i>Physica Status Solidi</i> (B): Basic Research, 2009 , 246, 2717-2720	1.3	16
133	Current Progress in the Chemical Vapor Deposition of Type-Selected Horizontally Aligned Single-Walled Carbon Nanotubes. <i>ACS Nano</i> , 2016 , 10, 7248-66	16.7	14
132	Electrical Breakdown of Suspended Mono- and Few-Layer Tungsten Disulfide via Sulfur Depletion Identified by in Situ Atomic Imaging. <i>ACS Nano</i> , 2017 , 11, 9435-9444	16.7	14
131	Monitoring microbial metabolites using an inductively coupled resonance circuit. <i>Scientific Reports</i> , 2015 , 5, 12878	4.9	14
130	Observation of Electrochemically Driven Elemental Segregation in a Si Alloy Thin-Film Anode and its Effects on Cyclic Stability for Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1501136	21.8	14
129	The effect of the core morphology of Eu(III)-doped nanoparticles on the ion exchange versus energy transfer between Eu(III) in the core and Cu(II) ions at the interface. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	14
128	Structural transformations of carbon chains inside nanotubes. <i>Physical Review B</i> , 2010 , 81,	3.3	14

127	Enhanced Interactions between a C60 fullerene and a buckle bend on a double-walled carbon nanotube. <i>Nano Research</i> , 2010 , 3, 92-97	10	14
126	On the formation process of silicon carbide nanophases via hydrogenated thermally induced templated synthesis. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 80, 1653-1656	2.6	14
125	Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Research, 2020, 13, 1564-1	5770	13
124	In situ observations of fullerene fusion and ejection in carbon nanotubes. <i>Nanoscale</i> , 2010 , 2, 2077-9	7.7	13
123	Applications of nanogenerators for biomedical engineering and healthcare systems. <i>Informat</i> ion <i>Materilly</i> , 2022 , 4,	23.1	13
122	Size and time dependent internalization of label-free nano-graphene oxide in human macrophages. <i>Nano Research</i> , 2017 , 10, 1980-1995	10	12
121	In Situ Formation of Free-Standing Single-Atom-Thick Antiferromagnetic Chromium Membranes. <i>Nano Letters</i> , 2020 , 20, 4354-4361	11.5	12
120	In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope. <i>Materials</i> , 2018 , 11,	3.5	12
119	Water transverse relaxation rates in aqueous dispersions of superparamagnetic iron oxide nanoclusters with diverse hydrophilic coating. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 443, 450-458	5.1	12
118	Nanoporous and highly active silicon carbide supported CeOE atalysts for the methane oxidation reaction. <i>Small</i> , 2014 , 10, 316-22	11	12
117	Room temperature in situ growth of B/BOx nanowires and BOx nanotubes. <i>Nano Letters</i> , 2014 , 14, 799	-840:55	12
116	A hard-templating route towards ordered mesoporous tungsten carbide and carbide-derived carbons. <i>Microporous and Mesoporous Materials</i> , 2014 , 186, 163-167	5.3	12
115	Ternary CNTs@TiOI/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries. <i>Materials</i> , 2017 , 10,	3.5	12
114	Electronic properties of single-walled carbon nanotubes encapsulating a cerium organometallic compound. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 2626-2630	1.3	12
113	Hydrogen activated axial inter-conversion in SiC nanowires. <i>Journal of Solid State Chemistry</i> , 2009 , 182, 602-607	3.3	12
112	Methods for Obtaining Graphene 2013 , 129-228		11
111	High-pressure catalytic chemical vapor deposition of ferromagnetic ruthenium-containing carbon nanostructures. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	11
110	Revealing the Various Electrochemical Behaviors of Sn4P3 Binary Alloy Anodes in Alkali Metal Ion Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2102047	15.6	11

109	Controllable Synthesis of Wafer-Scale Graphene Films: Challenges, Status, and Perspectives. <i>Small</i> , 2021 , 17, e2008017	11	11
108	Electron-Driven Metal Oxide Effusion and Graphene Gasification at Room Temperature. <i>ACS Nano</i> , 2016 , 10, 6323-30	16.7	11
107	Direct Growth of 5 in. Uniform Hexagonal Boron Nitride on Glass for High-Performance Deep-Ultraviolet Light-Emitting Diodes. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800662	4.6	11
106	A pinecone-inspired nanostructure design for long-cycle and high performance Si anodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5395-5401	13	10
105	In Situ Electron Driven Carbon Nanopillar-Fullerene Transformation through Cr Atom Mediation. <i>Nano Letters</i> , 2017 , 17, 4725-4732	11.5	10
104	Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications. <i>Nano Research</i> , 2021 , 14, 260-267	10	10
103	Self-Supported PtAuCu@Cu2O/Pt Hybrid Nanobranch as a Robust Electrocatalyst for the Oxygen Reduction Reaction. <i>ChemElectroChem</i> , 2017 , 4, 1554-1559	4.3	9
102	Surfactant free fractions of metallic and semiconducting single-walled carbon nanotubes via optimised gel chromatography. <i>Materials Research Bulletin</i> , 2012 , 47, 687-691	5.1	9
101	Ultrafast self-catalytic growth of silicon carbide nanowires. <i>Journal of Materials Research</i> , 2011 , 26, 306	5 5±3 9071	19
100	Bulk quantity and physical properties of boron nitride nanocapsules with a narrow size distribution. <i>Carbon</i> , 2005 , 43, 615-621	10.4	9
99	Mildly Oxidized MXene (TiC, NbC, and VC) Electrocatalyst via a Generic Strategy Enables Longevous Li-O Battery under a High Rate. <i>ACS Nano</i> , 2021 ,	16.7	9
98	Negative Electro-conductance in Suspended 2D WS Nanoscale Devices. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 32963-32970	9.5	9
97	Wax-assisted crack-free transfer of monolayer CVD graphene: Extending from standalone to supported copper substrates. <i>Applied Surface Science</i> , 2019 , 493, 81-86	6.7	8
96	Exchange interactions of spin-active metallofullerenes in solid-state carbon networks. <i>Physical Review B</i> , 2010 , 81,	3.3	8
95	Fabrication method of parallel mesoporous carbon nanotubes. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 377, 150-155	5.1	8
94	On the efficiency of bile salt for stable suspension and isolation of single-walled carbon nanotubes pectroscopic and microscopic investigations. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 100, 505-510	2.6	8
93	On the graphitisation role of oxide supports in carbon nanotube CVD synthesis. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 1939-1942	1.3	8
92	The Mechanism of Graphene Vapor-Solid Growth on Insulating Substrates. ACS Nano, 2021, 15, 7399-74	1086.7	8

91	In Situ Fabrication of Freestanding Single-Atom-Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments. <i>Advanced Science</i> , 2021 , 8, e2100619	13.6	8
90	Direct chemical vapor deposition synthesis of large area single-layer brominated graphene <i>RSC Advances</i> , 2019 , 9, 13527-13532	3.7	7
89	Vertical Graphene Growth from Amorphous Carbon Films Using Oxidizing Gases. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 17965-17970	3.8	7
88	Residue reduction and intersurface interaction on single graphene sheets. <i>Carbon</i> , 2016 , 100, 345-350	10.4	7
87	Electrical Properties of Hybrid Nanomembrane/Nanoparticle Heterojunctions: The Role of Inhomogeneous Arrays. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 6891-6899	3.8	7
86	Impact of heating mode in synthesis of monodisperse iron-oxide nanoparticles via oleate decomposition. <i>Journal of the Iranian Chemical Society</i> , 2016 , 13, 299-305	2	7
85	Fluorescent magnetic nanoparticles for modulating the level of intracellular Ca in motoneurons. <i>Nanoscale</i> , 2019 , 11, 16103-16113	7.7	7
84	Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core. <i>Scientific Reports</i> , 2013 , 3, 1840	4.9	7
83	The influence of pH on organovermiculite structure stability. <i>Applied Clay Science</i> , 2014 , 93-94, 17-22	5.2	7
82	A Systematic and Comparative Study of Binary Metal Catalysts for Carbon Nanotube Fabrication Using CVD and Laser Evaporation. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2013 , 21, 273-285	1.8	7
81	Boron doped carbon nanotubes via ceramic catalysts. <i>Physica Status Solidi - Rapid Research Letters</i> , 2009 , 3, 193-195	2.5	7
80	Carbon nanotube nanoelectronic devices compatible with transmission electron microscopy. <i>Nanotechnology</i> , 2011 , 22, 245305	3.4	7
79	Loss-spectroscopy on sparse arrays of aligned single-wall carbon nanotubes. <i>Physica Status Solidi</i> (B): Basic Research, 2008 , 245, 2284-2287	1.3	7
78	Comparative study on thermal and plasma enhanced CVD grown carbon nanotubes from gas phase prepared elemental and binary catalyst particles. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 19	1 ∮ ∹∮92	2 7
77	Modification of SiC based nanorods via a hydrogenated annealing process. <i>Synthetic Metals</i> , 2005 , 153, 349-352	3.6	7
76	High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy. <i>Informal</i> Materilly, 2021 , 3, 1455	23.1	7
75	Molecular Scaffold Growth of Two-Dimensional, Strong Interlayer-Bonding-Layered Materials. <i>CCS Chemistry</i> ,117-127	7.2	7
74	Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. <i>ACS Sensors</i> , 2021 , 6, 3841-3881	9.2	7

(2014-2020)

73	ROS-generation and cellular uptake behavior of amino-silica nanoparticles arisen from their uploading by both iron-oxides and hexamolybdenum clusters. <i>Materials Science and Engineering C</i> , 2020 , 117, 111305	8.3	7
72	Direct insight into sulfiphilicity-lithiophilicity design of bifunctional heteroatom-doped graphene mediator toward durable Li-S batteries. <i>Journal of Energy Chemistry</i> , 2022 , 66, 474-482	12	7
71	Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. <i>Nano Research</i> , 2019 , 12, 1888-1893	10	6
70	Adsorption-Free Growth of Ultra-Thin Molybdenum Membranes with a Low-Symmetry Rectangular Lattice Structure. <i>Small</i> , 2020 , 16, e2001325	11	6
69	In Situ N-Doped Graphene and Mo Nanoribbon Formation from Mo Ti C MXene Monolayers. <i>Small</i> , 2020 , 16, e1907115	11	6
68	Growth of all-carbon horizontally aligned single-walled carbon nanotubes nucleated from fullerene-based structures. <i>Nanoscale Research Letters</i> , 2013 , 8, 265	5	6
67	Applications of Graphene 2013 , 333-437		6
66	Understanding the growth of amorphous SiO2 nanofibers and crystalline binary nanoparticles produced by laser ablation. <i>Nanotechnology</i> , 2012 , 23, 035601	3.4	6
65	Metallization and investigation of electrical properties of in vitro recrystallized mSbsC-eGFP assemblies. <i>Nanotechnology</i> , 2011 , 22, 375606	3.4	6
64	Gel-based separation of single-walled carbon nanotubes for metallic and semiconducting fractions. <i>Materials Research Bulletin</i> , 2011 , 46, 1535-1539	5.1	6
63	Carbon nanotube synthesis via ceramic catalysts. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 248	36-348	96
62	Low pressure chemical vapor deposition synthesis of large area hetero-doped mono- and few-layer graphene with nitrogen and oxygen species. <i>Materials Research Express</i> , 2019 , 6, 055604	1.7	6
61	In-situ observations of novel single-atom thick 2D tin membranes embedded in graphene. <i>Nano Research</i> , 2021 , 14, 747-753	10	6
60	Graphene on graphene formation from PMMA residues during annealing. <i>Vacuum</i> , 2017 , 137, 191-194	3.7	5
59	Regulation of Two-Dimensional Lattice Deformation Recovery. <i>IScience</i> , 2019 , 13, 277-283	6.1	5
58	Amphiphiles with polyethyleneoxidepolyethylenecarbonate chains for hydrophilic coating of iron oxide cores, loading by Gd(III) ions and tuning R2/R1 ratio. <i>Reactive and Functional Polymers</i> , 2016 , 99, 107-113	4.6	5
57	Graphene Coatings for the Mitigation of Electron Stimulated Desorption and Fullerene Cap Formation. <i>Chemistry of Materials</i> , 2014 , 26, 4998-5003	9.6	5
56	In situ observations of Pt nanoparticles coalescing inside carbon nanotubes. <i>RSC Advances</i> , 2014 , 4, 494	.43 .7 49	445

55	Properties of Graphene 2013 , 61-127		5
54	Characterisation Techniques 2013 , 229-332		5
53	Silicon carbide embedded in carbon nanofibres: structure and band gap determination. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 24437-42	3.6	5
52	Tuning Carbon Nanotubes Through Poor Metal Addition to Iron Catalysts in CVD. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2010 , 18, 37-44	1.8	5
51	On the use of Cu catalysts for tailoring carbon nanostructures in alcohol-CVD. <i>Physica Status Solidi</i> (B): Basic Research, 2009 , 246, 2448-2452	1.3	5
50	Single-wall carbon nanotubes prepared with different kinds of Nito catalysts: Raman and optical spectrum analysis. <i>Carbon</i> , 2007 , 45, 196-202	10.4	5
49	Emerging Internet of Things driven carbon nanotubes-based devices. Nano Research,1	10	5
48	A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics. <i>Materials Advances</i> , 2022 , 3, 1497-1505	3.3	5
47	An effective formaldehyde gas sensor based on oxygen-rich three-dimensional graphene <i>Nanotechnology</i> , 2022 ,	3.4	5
46	Recent Advances in Boron- and Nitrogen-Doped Carbon-Based Materials and Their Various Applications. <i>Advanced Materials Interfaces</i> ,2101964	4.6	5
45	Variations in the Sorptive Properties of Organovermiculites Modified with Hexadecyltrimethylammonium and Hexadecylpyridinium Cations. <i>Journal of Scientific Conference Proceedings</i> , 2010 , 2, 36-41		5
44	In Situ Observations of Freestanding Single-Atom-Thick Gold Nanoribbons Suspended in Graphene. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000436	4.6	5
43	Boosting K + Capacitive Storage in Dual-Doped Carbon Crumples with BN Moiety via a General Protic-Salt Synthetic Strategy. <i>Advanced Functional Materials</i> , 2022 , 32, 2109969	15.6	5
42	Rapid synthesis of pristine graphene inside a transmission electron microscope using gold as catalyst. <i>Communications Chemistry</i> , 2019 , 2,	6.3	4
41	Hydrogen-induced self-assembly of helical carbon nanostructures from ethanol over SiO2 catalysts. <i>Journal of Applied Physics</i> , 2011 , 109, 094317	2.5	4
40	Oxide catalysts for carbon nanotube and few layer graphene formation. <i>Physica Status Solidi (B):</i> Basic Research, 2009 , 246, 2530-2533	1.3	4
39	On the Formation of Single-Walled Carbon Nanotubes in Pulsed-Laser-Assisted Chemical Vapor Deposition. <i>Chemistry of Materials</i> , 2008 , 20, 128-134	9.6	4
38	Large-Area Single-Crystal Graphene via Self-Organization at the Macroscale. <i>Advanced Materials</i> , 2020 , 32, e2002755	24	4

(2018-2016)

37	Comparison of Selected Oxidative Methods for Carbon Nanotubes: Structure and Functionalization Study. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 7822-7825	1.3	4
36	Biomass Template Derived Boron/Oxygen Co-Doped Carbon Particles as Advanced Anodes for Potassium-Ion Batteries. <i>Energy and Environmental Materials</i> ,	13	4
35	Single-walled carbon nanotubes fractionation via electrophoresis. <i>Polish Journal of Chemical Technology</i> , 2011 , 13, 1-4	1	3
34	Separation of surfactant functionalized single-walled carbon nanotubes via free solution electrophoresis method. <i>Open Physics</i> , 2011 , 9,	1.3	3
33	Growth of catalyst-assisted and catalyst-free horizontally aligned single wall carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 2467-2470	1.3	3
32	Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes. <i>ACS Nano</i> , 2009 , 3, 3839-44	16.7	3
31	Tracking down the catalytic hydrogenation of multilayer graphene. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, 2731-2734		3
30	Toward stable lithium-ion batteries: Accelerating the transfer and alloying reactions of Sn-based anodes via coordination atom regulation and carbon hybridization. <i>Journal of Power Sources</i> , 2022 , 519, 230778	8.9	3
29	A comparative study on simple and practical chemical gas sensors from chemically modified graphene films. <i>Materials Research Express</i> , 2019 , 6, 015607	1.7	3
28	Room temperature single-step synthesis of metal decorated boron-rich nanowires via laser ablation. <i>Nano Convergence</i> , 2019 , 6, 14	9.2	2
27	Large-Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. <i>Angewandte Chemie</i> , 2019 , 131, 14588-14593	3.6	2
26	Spatial recognition of defects and tube type in carbon nanotube field effect transistors using electrostatic force microscopy. <i>Nanotechnology</i> , 2013 , 24, 235708	3.4	2
25	Advanced red phosphorus/carbon composites with practical application potential for sodium ion batteries. <i>Energy Storage Materials</i> , 2022 , 46, 20-28	19.4	2
24	Mechanistic Probing of Encapsulation and Confined Growth of Lithium Crystals in Carbonaceous Nanotubes. <i>Advanced Materials</i> , 2021 , e2105228	24	2
23	Dual-Salt Electrolyte Additives Enabled Stable Lithium Metal Anode/Lithium Manganese-Rich Cathode Batteries. <i>Advanced Energy and Sustainability Research</i> ,2100140	1.6	2
22	Facile production of ultra-fine silicon nanoparticles. Royal Society Open Science, 2020, 7, 200736	3.3	2
21	In-situ Quasi-Instantaneous e-beam Driven Catalyst-Free Formation Of Crystalline Aluminum Borate Nanowires. <i>Scientific Reports</i> , 2016 , 6, 22524	4.9	2
20	Charge Density Waves Driven by Peierls Instability at the Interface of Two-Dimensional Lateral Heterostructures. <i>Small</i> , 2018 , 14, e1803040	11	2

19	Frontispiece: Large-Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. <i>Angewandte Chemie - International Edition</i> , 2019 , 58,	16.4	1
18	A cheap and quickly adaptable in situ electrical contacting TEM sample holder design. <i>Ultramicroscopy</i> , 2014 , 139, 1-4	3.1	1
17	Novel method controlled synthesis of silica coated carbon nanotubes. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 462-465	1.6	1
16	High resolution X-ray absorption on metallicity selected C60 peapods, single-, and double walled carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 2544-2547	1.3	1
15	Low temperature CVD growth of graphene nano-flakes directly on high K dielectrics. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1284, 19		1
14	Quasistatic Equilibrium Chemical Vapor Deposition of Graphene. Advanced Materials Interfaces, 2101500	04.6	1
13	T2- and T1 relaxivities and magnetic hyperthermia of iron-oxide nanoparticles combined with paramagnetic Gd complexes. <i>Journal of Chemical Sciences</i> , 2021 , 133, 1	1.8	1
12	Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family. <i>Nano Research</i> ,1	10	1
11	Nanoparticles for Nanocomposites and Their CharacterizationBelected Peer-Reviewed Articles from NanoOstrava 2015. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 7781-7782	1.3	1
10	Tailoring the stoichiometry of CN nanosheets under electron beam irradiation. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 4747-4756	3.6	1
9	Eliminating Graphite Exfoliation with an Artificial Solid Electrolyte Interphase for Stable Lithium-Ion Batteries <i>Small</i> , 2022 , e2107460	11	1
8	Ru clusters anchored on Magnli phase Ti4O7 nanofibers enables flexible and highly efficient Li D 2 batteries. <i>Energy Storage Materials</i> , 2022 , 50, 355-364	19.4	1
7	RETRACTEDElectron-driven engineering of graphene. Journal of Materials Research, 2013, 1-7	2.5	O
6	On the Catalytic Activity of Sn Monomers and Dimers at Graphene Edges and the Synchronized Edge Dependence of Diffusing Atoms in Sn Dimers. <i>Advanced Functional Materials</i> , 2021 , 31, 2104340	15.6	O
5	Mechanistic Probing of Encapsulation and Confined Growth of Lithium Crystals in Carbonaceous Nanotubes (Adv. Mater. 51/2021). <i>Advanced Materials</i> , 2021 , 33, 2170407	24	O
4	Toward Direct Growth of Ultra-Flat Graphene. Advanced Functional Materials,2200428	15.6	O
3	On the carbo-thermal reduction of silica for carbon nano-fibre formation via CVD. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1284, 25		
2	In-situ Observations of Restructuring Carbon Nanotubes via Low-voltage Aberration-corrected Transmission Electron Microscopy. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1284, 101		

Accelerating O-Redox Kinetics with Carbon Nanotubes for Stable Lithium-Rich Cathodes.. *Small Methods*, **2022**, e2200449

12.8