Bruno D Mattos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4525070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of sustainable polymeric composites using grape pomace biomass. Biomass Conversion and Biorefinery, 2022, 12, 5869-5880.	4.6	12
2	Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging. ACS Applied Materials & Interfaces, 2022, 14, 30236-30245.	8.0	17
3	Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Advanced Materials, 2021, 33, e2001085.	21.0	117
4	Regioselective and water-assisted surface esterification of never-dried cellulose: nanofibers with adjustable surface energy. Green Chemistry, 2021, 23, 6966-6974.	9.0	24
5	Lignin-Based Porous Supraparticles for Carbon Capture. ACS Nano, 2021, 15, 6774-6786.	14.6	56
6	Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today, 2021, 37, 101078.	11.9	77
7	Plantâ€Derived Hydrogels: Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels (Adv. Mater. 28/2021). Advanced Materials, 2021, 33, 2170218.	21.0	2
8	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	47.7	113
9	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	21.0	50
10	Upcycling Byproducts from Insect (Fly Larvae and Mealworm) Farming into Chitin Nanofibers and Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 13618-13629.	6.7	13
11	Single-Step Fiber Pretreatment with Monocomponent Endoglucanase: Defibrillation Energy and Cellulose Nanofibril Quality. ACS Sustainable Chemistry and Engineering, 2021, 9, 2260-2270.	6.7	33
12	Lignin Nanoparticle Nucleation and Growth on Cellulose and Chitin Nanofibers. Biomacromolecules, 2021, 22, 880-889.	5.4	19
13	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues (Adv. Mater. 43/2021). Advanced Materials, 2021, 33, 2170342.	21.0	3
14	Superstable Wet Foams and Lightweight Solid Composites from Nanocellulose and Hydrophobic Particles. ACS Nano, 2021, 15, 19712-19721.	14.6	14
15	Guiding Bacterial Activity for Biofabrication of Complex Materials <i>via</i> Controlled Wetting of Superhydrophobic Surfaces. ACS Nano, 2020, 14, 12929-12937.	14.6	23
16	Nanofibrillar networks enable universal assembly of superstructured particle constructs. Science Advances, 2020, 6, eaaz7328.	10.3	44
17	Cogrinding Wood Fibers and Tannins: Surfactant Effects on the Interactions and Properties of Functional Films for Sustainable Packaging Materials. Biomacromolecules, 2020, 21, 1865-1874.	5.4	27
18	Pilot-Scaled Fast-Pyrolysis Conversion of Eucalyptus Wood Fines into Products: Discussion Toward Possible Applications in Biofuels, Materials, and Precursors. Bioenergy Research, 2020, 13, 411-422.	3.9	16

Bruno D Mattos

#	Article	IF	CITATIONS
19	Spherical lignin particles: a review on their sustainability and applications. Green Chemistry, 2020, 22, 2712-2733.	9.0	228
20	Twoâ€Phase Emulgels for Direct Ink Writing of Skinâ€Bearing Architectures. Advanced Functional Materials, 2019, 29, 1902990.	14.9	60
21	Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. Nanoscale, 2019, 11, 19842-19849.	5.6	93
22	Accounting for Substrate Interactions in the Measurement of the Dimensions of Cellulose Nanofibrils. Biomacromolecules, 2019, 20, 2657-2665.	5.4	34
23	Biomimetic Templating: Tessellation of Chiralâ€Nematic Cellulose Nanocrystal Films by Microtemplating (Adv. Funct. Mater. 25/2019). Advanced Functional Materials, 2019, 29, 1970169.	14.9	1
24	Tessellation of Chiralâ€Nematic Cellulose Nanocrystal Films by Microtemplating. Advanced Functional Materials, 2019, 29, 1808518.	14.9	37
25	Porous Inorganic and Hybrid Systems for Drug Delivery: Future Promise in Combatting Drug Resistance and Translation to Botanical Applications. Current Medicinal Chemistry, 2019, 26, 6107-6131.	2.4	23
26	Controlled biocide release from hierarchically-structured biogenic silica: surface chemistry to tune release rate and responsiveness. Scientific Reports, 2018, 8, 5555.	3.3	35
27	Use of Biogenic Silica in Porous Alginate Matrices for Sustainable Fertilization with Tailored Nutrient Delivery. ACS Sustainable Chemistry and Engineering, 2018, 6, 2716-2723.	6.7	22
28	Thermosetting composites prepared using husk of pine nuts from <i>Araucaria angustifolia</i> . Polymer Composites, 2018, 39, 476-483.	4.6	3
29	Consecutive Production of Hydroalcoholic Extracts, Carbohydrates Derivatives and Silica Nanoparticles from Equisetum arvense. Waste and Biomass Valorization, 2018, 9, 1993-2002.	3.4	8
30	Impact of tannin as sustainable compatibilizer for woodâ€polypropylene composites. Polymer Composites, 2018, 39, 4275-4284.	4.6	9
31	Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments. Small, 2018, 14, e1801256.	10.0	32
32	Pinewood Composite Prepared by <i>In Situ</i> Graft Polymerization of Epoxy Monomer. Polymer Composites, 2017, 38, 597-603.	4.6	2
33	Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide. Journal of Cleaner Production, 2017, 142, 4206-4213.	9.3	52
34	Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems. Journal of Controlled Release, 2017, 262, 139-150.	9.9	123
35	Design and preparation of carbendazim-loaded alumina nanoparticles as a controlled-release biocide for wood protection. International Biodeterioration and Biodegradation, 2017, 123, 174-181.	3.9	8
36	Chemical characterization of wood and extractives of fast-growing <i>Schizolobium parahyba</i> and <i>Pinus taeda</i> . Wood Material Science and Engineering, 2016, 11, 209-216.	2.3	14

Bruno D Mattos

#	Article	IF	CITATIONS
37	Color changes of wood from Pinus taeda and Schizolobium parahybum treated by in situ polymerization of methyl methacrylate using cross-linkers. Maderas: Ciencia Y Tecnologia, 2016, , 0-0.	0.7	2
38	Biogenic nanosilica blended by nanofibrillated cellulose as support for slow-release of tebuconazole. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	29
39	Bio-oil from a fast pyrolysis pilot plant as antifungal and hydrophobic agent for wood preservation. Journal of Analytical and Applied Pyrolysis, 2016, 122, 1-6.	5.5	25
40	Biogenic SiO2 in colloidal dispersions via ball milling and ultrasonication. Powder Technology, 2016, 301, 58-64.	4.2	28
41	Effects of Two-Step Freezing-Heat Treatments on Japanese Raisintree (Hovenia DulcisThunb.) Wood Properties. Journal of Wood Chemistry and Technology, 2016, 36, 16-26.	1.7	12
42	Wood-polymer composites prepared by free radical in situ polymerization of methacrylate monomers into fast-growing pinewood. Wood Science and Technology, 2015, 49, 1281-1294.	3.2	22
43	Roughness and color evaluation of wood polymer composites filled by household waste of mate-tea. Maderas: Ciencia Y Tecnologia, 2015, , 0-0.	0.7	1
44	Effect of thermal treatments on technological properties of wood from two Eucalyptus species. Anais Da Academia Brasileira De Ciencias, 2015, 87, 471-481.	0.8	26
45	Chemical modification of fast-growing eucalyptus wood. Wood Science and Technology, 2015, 49, 273-288.	3.2	26
46	Thermochemical and physical properties of two fast-growing eucalypt woods subjected to two-step freeze–heat treatments. Thermochimica Acta, 2015, 615, 15-22.	2.7	24
47	Colour responses of two fast-growing hardwoods to two-step steam-heat treatments. Materials Research, 2014, 17, 487-493.	1.3	15
48	Physical and mechanical properties and colour changes of fast-growing Gympie messmate wood subjected to two-step steam-heat treatments. Wood Material Science and Engineering, 2014, 9, 40-48.	2.3	22
49	Properties of polypropylene composites filled with a mixture of household waste of mate-tea and wood particles. Construction and Building Materials, 2014, 61, 60-68.	7.2	64
50	Thermochemical and hygroscopicity properties of pinewood treated by in situ copolymerisation with methacrylate monomers. Thermochimica Acta, 2014, 596, 70-78.	2.7	18
51	Biodeterioration of wood from two fast-growing eucalypts exposed to field test. International Biodeterioration and Biodegradation, 2014, 93, 210-215.	3.9	13
52	Colour changes of Brazilian eucalypts wood by natural weathering. International Wood Products Journal, 2014, 5, 33-38.	1.1	24