Ahmet Ulu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4524963/publications.pdf

Version: 2024-02-01

361413 330143 1,461 40 20 37 citations h-index g-index papers 41 41 41 1554 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chemical Reviews, 2020, 120, 9304-9362.	47.7	477
2	Magnetic-propelled Fe ₃ O ₄ â€"chitosan carriers enhance <scp>I</scp> -asparaginase catalytic activity: a promising strategy for enzyme immobilization. RSC Advances, 2018, 8, 36063-36075.	3.6	62
3	Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. International Journal of Biological Macromolecules, 2020, 150, 871-884.	7.5	62
4	Design of epoxy-functionalized Fe3O4@MCM-41 core–shell nanoparticles for enzyme immobilization. International Journal of Biological Macromolecules, 2018, 115, 1122-1130.	7.5	53
5	Immobilization of <scp>l</scp> -Asparaginase on Carrier Materials: A Comprehensive Review. Bioconjugate Chemistry, 2017, 28, 1598-1610.	3.6	51
6	Metal–organic frameworks (MOFs): a novel support platform for ASNase immobilization. Journal of Materials Science, 2020, 55, 6130-6144.	3.7	48
7	Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient l-asparaginase immobilization. International Journal of Biological Macromolecules, 2020, 142, 443-451.	7.5	43
8	Chitosan/polypropylene glycol hydrogel composite film designed with TiO2 nanoparticles: A promising scaffold of biomedical applications. International Journal of Biological Macromolecules, 2020, 163, 529-540.	7.5	43
9	Chloro-Modified Magnetic Fe3O4@MCM-41 Core–Shell Nanoparticles for L-Asparaginase Immobilization with Improved Catalytic Activity, Reusability, and Storage Stability. Applied Biochemistry and Biotechnology, 2019, 187, 938-956.	2.9	41
10	Design of starch functionalized biodegradable P(MAA-co-MMA) as carrier matrix for l-asparaginase immobilization. Carbohydrate Polymers, 2016, 153, 559-572.	10.2	40
11	Magnetic Fe ₃ O ₄ @MCM-41 coreâ€"shell nanoparticles functionalized with thiol silane for efficient <scp>l</scp> -asparaginase immobilization. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1035-1045.	2.8	40
12	Design of laccase–metal–organic framework hybrid constructs for biocatalytic removal of textile dyes. Chemosphere, 2022, 292, 133382.	8.2	39
13	Comparative study of ASNase immobilization on tannic acid-modified magnetic Fe ₃ O ₄ /SBA-15 nanoparticles to enhance stability and reusability. New Journal of Chemistry, 2020, 44, 4440-4451.	2.8	37
14	The Toxicity Assessment of Iron Oxide (Fe3O4) Nanoparticles on Physical and Biochemical Quality of Rainbow Trout Spermatozoon. Toxics, 2018, 6, 62.	3.7	35
15	Synthesis and characterization of <scp>PMMA</scp> composites activated with starch for immobilization of <scp>L</scp> â€asparaginase. Journal of Applied Polymer Science, 2016, 133, .	2.6	31
16	Poly(2â€hydroxyethyl methacrylate)/boric acid composite hydrogel as soft contact lens material: Thermal, optical, rheological, and enhanced antibacterial properties. Journal of Applied Polymer Science, 2018, 135, 46575.	2.6	31
17	Preparation and characterization of amino and carboxyl functionalized core-shell Fe ₃ O ₄ /SiO ₂ for L-asparaginase immobilization: A comparison study. Biocatalysis and Biotransformation, 2020, 38, 392-404.	2.0	30
18	Synthesis and characterization of biodegradable pHEMA-starch composites for immobilization of L-asparaginase. Polymer Bulletin, 2016, 73, 1891-1907.	3.3	29

#	Article	IF	CITATIONS
19	The in vitro toxicity analysis of titanium dioxide (TiO 2) nanoparticles on kinematics and biochemical quality of rainbow trout sperm cells. Environmental Toxicology and Pharmacology, 2018, 62, 11-19.	4.0	29
20	Eco-friendly chitosan/ $\hat{\mathbb{P}}$ -carrageenan membranes reinforced with activated bentonite for adsorption of methylene blue. Materials Chemistry and Physics, 2022, 278, 125611.	4.0	28
21	The Carboxylated Multi-walled Carbon Nanotubes/l-Asparaginase Doped Calcium-Alginate Beads: Structural and Biocatalytic Characterization. Catalysis Letters, 2020, 150, 1679-1691.	2.6	22
22	Tunable and tough porous chitosan/ \hat{l}^2 -cyclodextrin/tannic acid biocomposite membrane with mechanic, antioxidant, and antimicrobial properties. International Journal of Biological Macromolecules, 2021, 188, 696-707.	7.5	22
23	Chitosan/Polyvinylpyrrolidone/MCMâ€41 Composite Hydrogel Films: Structural, Thermal, Surface, and Antibacterial Properties. Starch/Staerke, 2018, 70, 1700303.	2.1	19
24	Development of l-asparaginase@hybrid Nanoflowers (ASNase@HNFs) Reactor System with Enhanced Enzymatic Reusability and Stability. Catalysis Letters, 2021, 151, 1191-1201.	2.6	17
25	l-asparaginase immobilized p(HEMA-GMA) cryogels: A recent study for biochemical, thermodynamic and kinetic parameters. Polymer Testing, 2021, 93, 106980.	4.8	17
26	Melatonin protects sperm cells of Capoeta trutta from toxicity of titanium dioxide nanoparticles. Environmental Science and Pollution Research, 2020, 27, 17843-17853.	5 . 3	15
27	Comparative study of catalase immobilization via adsorption on P(MMA-co-PEG500MA) structures as an effective polymer support. Polymer Bulletin, 2021, 78, 2663-2684.	3.3	14
28	Fabrication of electrospun polycaprolactone/chitosan nanofiber-modified screen-printed electrode for highly sensitive detection of diazinon in food analysis. Measurement: Journal of the International Measurement Confederation, 2022, 187, 110250.	5.0	14
29	Investigation of toxic effects of amorphous SiO2 nanoparticles on motility and oxidative stress markers in rainbow trout sperm cells. Environmental Science and Pollution Research, 2019, 26, 15641-15652.	5.3	11
30	Biomedical applications of hybrid polymer composite materials. , 2017, , 343-408.		10
31	Title is missing!. Turkish Journal of Fisheries and Aquatic Sciences, 2018, 18, .	0.9	10
32	αâ€Amylase Immobilization on P(HEMA 0â€PEGMA) Hydrogels: Preparation, Characterization, and Catalytic Investigation. Starch/Staerke, 2021, 73, 2000217.	2.1	8
33	Tailor-made shape memory stents for therapeutic enzymes: A novel approach to enhance enzyme performance. International Journal of Biological Macromolecules, 2021, 185, 966-982.	7.5	7
34	A Positive Effect of Magnetic Field on the Catalytic Activity of Immobilized L-Asparaginase: Evaluation of its Feasibility. Catalysis Letters, 2023, 153, 1250-1264.	2.6	6
35	Preparation, characterization, and <i>inÂvitro</i> release study of vincristine sulfate-loaded chitosan–polyethylene glycol–oleic acid composites. International Journal of Polymer Analysis and Characterization, 2021, 26, 291-308.	1.9	5
36	Preparation, Controlled Drug Release, and Cell Viability Evaluation of Tenofovir Alafenamide‣oaded Chitosan Nanoparticles. Starch/Staerke, 2024, 76, .	2.1	5

3

Анмет Ulu

#	Article	IF	CITATION
37	Fabrication of Oleic Acid Grafted Starchâ€based Hybrid Carriers for <scp>l</scp> â€Asparaginase Encapsulation. Starch/Staerke, 2024, 76, 2100152.	2.1	5
38	Preparation and Characterization of Amino-Functionalized Zeolite/SiO2 Materials for Trypsin–Chymotrypsin Co-immobilization. Catalysis Letters, 2021, 151, 2463-2477.	2.6	4
39	Effects of taurine and apocynin on the zone of stasis. Burns, 2022, 48, 1850-1862.	1.9	1
40	The Cytotoxicity, DNA Fragmentation, and Decreasing Velocity Induced By Chromium(III) Oxide on Rainbow Trout Spermatozoa. Biological Trace Element Research, 2023, 201, 968-983.	3.5	0