Fernão D Magalhães

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4524876/publications.pdf

Version: 2024-02-01

153 papers 4,712 citations

35 h-index 61 g-index

157 all docs

157 docs citations

157 times ranked

5651 citing authors

#	Article	IF	CITATIONS
1	Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon, 2022, 190, 194-244.	5.4	24
2	Advances in carbon nanomaterials for immunotherapy. Applied Materials Today, 2022, 27, 101397.	2.3	15
3	Using Graphene-Based Materials for Stiff and Strong Poly(ethylene glycol) Hydrogels. International Journal of Molecular Sciences, 2022, 23, 2312.	1.8	7
4	Fabrication of Polymer/Graphene Biocomposites for Tissue Engineering. Polymers, 2022, 14, 1038.	2.0	8
5	Bone: An Outstanding Composite Material. Applied Sciences (Switzerland), 2022, 12, 3381.	1.3	14
6	Grape Canes (Vitis vinifera L.) Applications on Packaging and Particleboard Industry: New Bioadhesive Based on Grape Extracts and Citric Acid. Polymers, 2022, 14, 1137.	2.0	12
7	Prediction of formaldehyde and residual methanol concentration in formalin using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 2022, 30, 160-168.	0.8	2
8	New Polymeric Composites Based on Two-Dimensional Nanomaterials for Biomedical Applications. Polymers, 2022, 14, 1464.	2.0	7
9	Formulation and Characterization of a Composite Coating Formulation Based on Acrylic Foam and Cork Granules. Coatings, 2022, 12, 732.	1.2	O
10	Flexible Composite Films Made of EMAAâ^'Na+ Ionomer: Evaluation of the Influence of Piezoelectric Particles on the Thermal and Mechanical Properties. Polymers, 2022, 14, 2755.	2.0	0
11	Graphene-based materials: the key for the successful application of pHEMA as a blood-contacting device. Biomaterials Science, 2021, 9, 3362-3377.	2.6	14
12	Light-Activated Antimicrobial Surfaces Using Industrial Varnish Formulations to Mitigate the Incidence of Nosocomial Infections. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7567-7579.	4.0	15
13	Graphene-Polymer Composites. Polymers, 2021, 13, 685.	2.0	9
14	High-Yield Production of Nano-Lateral Size Graphene Oxide by High-Power Ultrasonication. Materials, 2021, 14, 1916.	1.3	5
15	Graphene Oxide Topical Administration: Skin Permeability Studies. Materials, 2021, 14, 2810.	1.3	11
16	New Cardoon (Cynara cardunculus L.) Particleboards Using Cardoon Leaf Extract and Citric Acid as Bio-adhesive. Materials Circular Economy, 2021, 3, 1.	1.6	5
17	Graphene films irradiated with safe low-power NIR-emitting diodes kill multidrug resistant bacteria. Carbon, 2021, 180, 10-21.	5.4	10
18	Effect of Panel Moisture Content on Internal Bond Strength and Thickness Swelling of Medium Density Fiberboard. Polymers, 2021, 13, 114.	2.0	10

#	Article	IF	Citations
19	Lignosulphonates as an Alternative to Non-Renewable Binders in Wood-Based Materials. Polymers, 2021, 13, 4196.	2.0	19
20	Effect of filler type on properties of PBAT/organoclay nanocomposites. Polymer Bulletin, 2020, 77, 901-917.	1.7	14
21	Incorporation of graphene oxide into poly(É>-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Materials Science and Engineering C, 2020, 109, 110537.	3.8	28
22	Near-Infrared Radiation-Based Mild Photohyperthermia Therapy of Non-Melanoma Skin Cancer with PEGylated Reduced Nanographene Oxide. Polymers, 2020, 12, 1840.	2.0	23
23	Low-Density Cardoon (Cynara cardunculus L.) Particleboards Bound with Potato Starch-Based Adhesive. Polymers, 2020, 12, 1799.	2.0	8
24	Effects of resin content on mechanical properties of cork-based panels bound with melamine-urea-formaldehyde and polyurethane binders. International Journal of Adhesion and Adhesives, 2020, 101, 102632.	1.4	4
25	Study of the synthesis parameters of a urea-formaldehyde resin synthesized according to alkaline-acid process. International Journal of Adhesion and Adhesives, 2020, 102, 102646.	1.4	5
26	Graphene Surfaces Interaction with Proteins, Bacteria, Mammalian Cells, and Blood Constituents: The Impact of Graphene Platelet Oxidation and Thickness. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21020-21035.	4.0	34
27	Use of Multi-Hollow Polyester Particles as Opacifying Agent for Injection-Molded Polyethylene. Polymers, 2020, 12, 1331.	2.0	4
28	Exposure of Smaller and Oxidized Graphene on Polyurethane Surface Improves its Antimicrobial Performance. Nanomaterials, 2020, 10, 349.	1.9	19
29	Experiment and modelling of the strain-rate-dependent response during in vitro degradation of PLA fibres. SN Applied Sciences, 2020, 2, 1.	1.5	3
30	Low Density Wood Particleboards Bonded with Starch Foamâ€"Study of Production Process Conditions. Materials, 2019, 12, 1975.	1.3	17
31	Graphene oxide-reinforced poly(2-hydroxyethyl methacrylate) hydrogels with extreme stiffness and high-strength. Composites Science and Technology, 2019, 184, 107819.	3.8	26
32	Effect of peroxide oxidation on the expansion of potato starch foam. Industrial Crops and Products, 2019, 137, 428-435.	2.5	25
33	Biosourced Disposable Trays Made of Brewer's Spent Grain and Potato Starch. Polymers, 2019, 11, 923.	2.0	18
34	Improvement of storage stability of UF resins by adding caprolactam. International Journal of Adhesion and Adhesives, 2019, 92, 105-110.	1.4	5
35	Intramedullary nailing biomechanics: Evolution and challenges. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019, 233, 295-308.	1.0	37
36	Impact of the Synthesis Procedure on Urea-Formaldehyde Resins Prepared by Alkaline–Acid Process. Industrial & Engineering Chemistry Research, 2019, 58, 5665-5676.	1.8	7

#	Article	IF	Citations
37	Carbon Membranes with Extremely High Separation Factors and Stability. Energy Technology, 2019, 7, 1801089.	1.8	18
38	Effect of spent sulfite liquor on urea–formaldehyde resin performance. Journal of Applied Polymer Science, 2019, 136, 47389.	1.3	7
39	Preparation of carbon molecular sieve membranes from an optimized ionic liquid-regenerated cellulose precursor. Journal of Membrane Science, 2019, 572, 390-400.	4.1	43
40	Fabrication and antimicrobial performance of surfaces integrating graphene-based materials. Carbon, 2018, 132, 709-732.	5.4	70
41	Utilization and characterization of amino resins for the production of wood-based panels with emphasis on particleboards (PB) and medium density fibreboards (MDF). A review. Holzforschung, 2018, 72, 653-671.	0.9	27
42	Biocompatible reinforcement of poly(Lactic acid) with graphene nanoplatelets. Polymer Composites, 2018, 39, E308.	2.3	35
43	Dynamic mechanical analysis and creep-recovery behavior of agglomerated cork. European Journal of Wood and Wood Products, 2018, 76, 133-141.	1.3	19
44	Biosourced Binder for Wood Particleboards Based on Spent Sulfite Liquor and Wheat Flour. Polymers, 2018, 10, 1070.	2.0	13
45	Partial replacement of melamine by benzoguanamine in MUF resins towards improved flexibility of agglomerated cork panels. International Journal of Adhesion and Adhesives, 2018, 87, 142-150.	1.4	10
46	Improving hydrophobic and oleophobic performances of high-pressure laminates. European Journal of Wood and Wood Products, 2018, 76, 1685-1695.	1.3	2
47	Reinforcement of Thermoplastic Corn Starch with Crosslinked Starch/Chitosan Microparticles. Polymers, 2018, 10, 985.	2.0	25
48	Introducing flexibility in urea–formaldehyde resins: Copolymerization with polyetheramines. Journal of Polymer Science Part A, 2018, 56, 1834-1843.	2.5	5
49	Copolymerization of UF Resins with Dimethylurea for Improving Storage Stability without Impairing Adhesive Performance. Materials, 2018, 11, 1032.	1.3	9
50	Highly flexible glycol-urea-formaldehyde resins. European Polymer Journal, 2018, 105, 167-176.	2.6	10
51	Blocked melamine–urea–formaldehyde resins and their usage in agglomerated cork panels. Journal of Applied Polymer Science, 2018, 135, 46663.	1.3	8
52	Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon, 2018, 139, 635-647.	5.4	48
53	The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire and Materials, 2017, 41, 111-130.	0.9	40
54	Use of master curves based on time-temperature superposition to predict creep failure of aluminium-glass adhesive joints. International Journal of Adhesion and Adhesives, 2017, 74, 144-154.	1.4	15

#	Article	IF	CITATIONS
55	Improvement of storage stability and physicochemical properties by addition of benzoguanamine in melamineâ€formaldehyde resin synthesis. Journal of Applied Polymer Science, 2017, 134, 45185.	1.3	13
56	Recent developments on intramedullary nailing: a biomechanical perspective. Annals of the New York Academy of Sciences, 2017, 1408, 20-31.	1.8	16
57	Determination of resin and moisture content in melamine-formaldehyde paper using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 2017, 25, 311-323.	0.8	7
58	Coke combustion in fluidized bed: A multi-disciplinary lab experiment. Education for Chemical Engineers, 2017, 19, 13-22.	2.8	3
59	Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review. Polymers, 2017, 9, 269.	2.0	109
60	Oxidized Xanthan Gum and Chitosan as Natural Adhesives for Cork. Polymers, 2016, 8, 259.	2.0	41
61	Low Density Wood-Based Particleboards Bonded with Foamable Sour Cassava Starch: Preliminary Studies. Polymers, 2016, 8, 354.	2.0	26
62	Natural Additive for Reducing Formaldehyde Emissions in Urea-Formaldehyde Resins. Journal of Renewable Materials, 2016, 4, 41-46.	1.1	9
63	Polymer surface adsorption as a strategy to improve the biocompatibility of graphene nanoplatelets. Colloids and Surfaces B: Biointerfaces, 2016, 146, 818-824.	2.5	39
64	Postformable and Self-Healing Finish Foil Based on Polyurethane-Impregnated Paper. Industrial & Engineering Chemistry Research, 2016, 55, 12376-12386.	1.8	9
65	Effect of biodegradation on thermo-mechanical properties and biocompatibility of poly(lactic) Tj ETQq1 1 0.784	314 rgBT /	Ovgglock 10 T
66	Influence of oxidized graphene nanoplatelets and [DMIM][NTf2] ionic liquid on the tribological performance of an epoxy-PTFE coating. Tribology International, 2016, 97, 478-489.	3.0	29
67	Synthesis of multihollow polyester particles in supra- and infra-millimeter size ranges by double emulsion process. Polymer Engineering and Science, 2016, 56, 590-597.	1.5	1
68	Production of water tolerant melamine–urea–formaldehyde resin by incorporation of sodium metabisulphite. International Journal of Adhesion and Adhesives, 2016, 70, 160-166.	1.4	9
69	Smaller particle size and higher oxidation improves biocompatibility of graphene-based materials. Carbon, 2016, 99, 318-329.	5.4	62
70	Effect of binder on performance of intumescent coatings. Journal of Coatings Technology Research, 2016, 13, 227-238.	1.2	22
71	Viscoplastic model analysis about the influence of graphene reinforcement in poly (lactic acid) time-dependent mechanical behaviour. International Journal of Automotive Composites, 2015, 1, 244.	0.1	5
72	Preparation of robust polyamide microcapsules by interfacial polycondensation ofp-phenylenediamine and sebacoyl chloride and plasticization with oleic acid. Journal of Microencapsulation, 2015, 32, 349-357.	1.2	3

#	Article	IF	Citations
73	Tribological Performance of PTFE-based Coating Modified with Microencapsulated [HMIM][NTf2] Ionic Liquid. Tribology Letters, 2015, 59, 1.	1.2	51
74	From mechanical stimulus to bone formation: A review. Medical Engineering and Physics, 2015, 37, 719-728.	0.8	100
75	Impact of thermal treatment on bonding performance of UF/PVAc formulations. International Wood Products Journal, 2014, 5, 212-216.	0.6	2
76	Formaldehyde emission in wood based panels: effect of curing reactions. International Wood Products Journal, 2014, 5, 146-150.	0.6	9
77	Effect of curing conditions on the properties of multivesiculated polyester particle dispersions. Polymer Engineering and Science, 2014, 54, 396-403.	1.5	4
78	Evaluation of Bonding Performance of Amino Polymers Using ABES. Journal of Adhesion, 2014, 90, 80-88.	1.8	12
79	The influence of scavengers on VOC emissions in particleboards made from pine and poplar. European Journal of Wood and Wood Products, 2014, 72, 117-121.	1.3	8
80	Physicomechanical characterization of monodisperse multivesiculated polyester particles. European Polymer Journal, 2014, 58, 173-179.	2.6	4
81	Stabilization of nano-TiO2 aqueous dispersions with poly(ethylene glycol)-b-poly(4-vinyl pyridine) block copolymer and their incorporation in photocatalytic acrylic varnishes. Progress in Organic Coatings, 2014, 77, 1741-1749.	1.9	17
82	Incorporation of an acrylic fatty acid derivative as comonomer for oxidative cure in acrylic latex. Journal of Coatings Technology Research, 2014, 11, 765-773.	1.2	6
83	Development of phenol-formaldehyde resin with low formaldehyde emissions that respects LEED certification. International Wood Products Journal, 2014, 5, 161-167.	0.6	2
84	Preparation and characterization of acrylic polymer nanocomposite films obtained from aqueous dispersions. Journal of Applied Polymer Science, 2013, 127, 2536-2543.	1.3	7
85	Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polymer International, 2013, 62, 33-40.	1.6	261
86	Scavengers for achieving zero formaldehyde emission of wood-based panels. Wood Science and Technology, 2013, 47, 1261-1272.	1.4	87
87	Determination of melamine content in amino resins by near-infrared spectroscopy. Wood Science and Technology, 2013, 47, 939-948.	1.4	7
88	Dispersion of graphene nanoplatelets in poly(vinyl acetate) latex and effect on adhesive bond strength. Polymer International, 2013, 62, 928-935.	1.6	23
89	Adhesive bond strength development evaluation using ABES in different lignocellulosic materials. International Journal of Adhesion and Adhesives, 2013, 47, 105-109.	1.4	13
90	Low VOC self-crosslinking waterborne acrylic coatings incorporating fatty acid derivatives. Progress in Organic Coatings, 2013, 76, 1691-1696.	1.9	24

#	Article	IF	Citations
91	Effect of added amines on the morphology of multivesiculated polyester particles. Polymer Engineering and Science, 2013, 53, 2261-2269.	1.5	4
92	Production of monodisperse multivesiculated polyester particles with a T-junction microfluidic device. Chemical Engineering Journal, 2013, 233, 323-330.	6.6	12
93	¹³ C NMR study of presence of uron structures in amino adhesives and relation with woodâ€based panels performance. Journal of Applied Polymer Science, 2013, 130, 4500-4507.	1.3	2
94	Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids and Surfaces B: Biointerfaces, 2013, 104, 229-238.	2.5	136
95	The role of sucrose in amino polymers synthesized by the strongly acid process. Journal of Adhesion Science and Technology, 2013, 27, 763-774.	1.4	13
96	Study of multivesiculated polyester particles synthesis by double emulsion process. European Polymer Journal, 2013, 49, 664-674.	2.6	5
97	Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces, 2013, 111, 188-202.	2.5	470
98	Sodium metabisulphite as a scavenger of air pollutants for wood-based building materials. International Wood Products Journal, 2013, 4, 242-247.	0.6	18
99	Release of Volatile Compounds from Polymeric Microcapsules Mediated by Photocatalytic Nanoparticles. International Journal of Photoenergy, 2013, 2013, 1-9.	1.4	7
100	Kinetics of the Carbon Dioxide Absorption and Desorption with Amino Acid Salt Solutions using Hollow Fiber Membrane Contactors. Procedia Engineering, 2012, 44, 1223-1224.	1.2	2
101	Viscosity determination of amino resins during synthesis using near-infrared spectroscopy. International Wood Products Journal, 2012, 3, 64-66.	0.6	8
102	Study of influence of synthesis conditions on properties of melamine–urea formaldehyde resins. International Wood Products Journal, 2012, 3, 51-57.	0.6	21
103	Synthesis and characterization of acrylic fatty acid derivative and use as reactive coalescing agent. European Journal of Lipid Science and Technology, 2012, 114, 1175-1182.	1.0	13
104	Synthesis and Characterization of Allyl Fatty Acid Derivatives as Reactive Coalescing Agents for Latexes. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 2215-2226.	0.8	10
105	Nanocomposite acrylic paint with self-cleaning action. Journal of Coatings Technology Research, 2012, 9, 687-693.	1.2	23
106	Use of fluoropolymer permanent release coatings for molded polyurethane foam production. Journal of Coatings Technology Research, 2012, 9, 757-764.	1.2	10
107	Alternative to latent catalysts for curing UF resins used in the production of low formaldehyde emission wood-based panels. International Journal of Adhesion and Adhesives, 2012, 33, 56-60.	1.4	59
108	Comparison of UF synthesis by alkaline-acid and strongly acid processes. Journal of Applied Polymer Science, 2012, 123, 1764-1772.	1.3	24

#	Article	IF	CITATIONS
109	Determination of formaldehyde/urea molar ratio in amino resins by nearâ€infrared spectroscopy. Journal of Applied Polymer Science, 2012, 124, 2441-2448.	1.3	23
110	Production of melamine fortified ureaâ€formaldehyde resins with low formaldehyde emission. Journal of Applied Polymer Science, 2012, 124, 2311-2317.	1.3	54
111	Mechanical study of PLA–PCL fibers during in vitro degradation. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 451-460.	1.5	205
112	Evaluation of urea-formaldehyde adhesives performance by recently developed mechanical tests. International Journal of Adhesion and Adhesives, 2011, 31, 127-134.	1.4	33
113	New Knudsen effusion apparatus with simultaneous gravimetric and quartz crystal microbalance mass loss detection. Journal of Chemical Thermodynamics, 2011, 43, 834-843.	1.0	67
114	Comparative study between a CMS membrane and a CMS adsorbent: Part lâ€"Morphology, adsorption equilibrium and kinetics. Journal of Membrane Science, 2010, 346, 15-25.	4.1	38
115	Comparative study between a CMS membrane and a CMS adsorbent: Part II. Water vapor adsorption and surface chemistry. Journal of Membrane Science, 2010, 346, 26-36.	4.1	13
116	Carbon molecular sieve membranes from cellophane paper. Journal of Membrane Science, 2010, 350, 180-188.	4.1	55
117	Treatment of Waters Containing the Thiocarbamate Herbicide Molinate through an Adsorption/Bio-Regeneration System using a Low-Cost Adsorbent. Water, Air, and Soil Pollution, 2010, 207, 289-298.	1.1	5
118	A study on the colloidal nature of ureaâ€formaldehyde resins and its relation with adhesive performance. Journal of Applied Polymer Science, 2010, 118, 1956-1968.	1.3	13
119	Separation of nitrogen from air by carbon molecular sieve membranes. Journal of Membrane Science, 2010, 350, 139-147.	4.1	19
120	Characterization of Urea-Formaldehyde Resins by GPC/SEC and HPLC Techniques: Effect of Ageing. Journal of Adhesion Science and Technology, 2010, 24, 1535-1551.	1.4	21
121	Optimization of the Synthesis of Urea-Formaldehyde Resins using Response Surface Methodology. Journal of Adhesion Science and Technology, 2010, 24, 1454-1471.	1.4	18
122	Influence of Pyrolysis Parameters on the Performance of CMSM. International Journal of Chemical Engineering, 2009, 2009, 1-7.	1.4	3
123	Carbon dioxide removal from anaesthetic gas circuits using hollow fiber membrane contactors with amino acid salt solutions. Journal of Membrane Science, 2009, 339, 275-286.	4.1	19
124	Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chemical Engineering Science, 2009, 64, 1993-2002.	1.9	156
125	LABVIRTUALâ€"A virtual platform to teach chemical processes. Education for Chemical Engineers, 2009, 4, e9-e19.	2.8	37
126	Aging study of carbon molecular sieve membranes. Journal of Membrane Science, 2008, 310, 494-502.	4.1	77

#	Article	lF	Citations
127	Carbon dioxide absorption kinetics in potassium threonate. Chemical Engineering Science, 2008, 63, 3493-3503.	1.9	57
128	Contamination of Zeolites Used in Oxygen Production by PSA: Effects of Water and Carbon Dioxide. Industrial & Engineering Chemistry Research, 2008, 47, 6197-6203.	1.8	34
129	High-Purity Oxygen Production by Pressure Swing Adsorption. Industrial & Engineering Chemistry Research, 2007, 46, 591-599.	1.8	81
130	Xenon recycling in an anaesthetic closed-system using carbon molecular sieve membranes. Journal of Membrane Science, 2007, 301, 29-38.	4.1	30
131	Characterization of potassium glycinate for carbon dioxide absorption purposes. Chemical Engineering Science, 2007, 62, 6534-6547.	1.9	153
132	Optimization of Medical PSA Units for Oxygen Production. Industrial & Engineering Chemistry Research, 2006, 45, 1085-1096.	1.8	26
133	Generalized linear driving force approximation for adsorption of multicomponent mixtures. Chemical Engineering Science, 2006, 61, 3519-3531.	1.9	34
134	Novel carbon molecular sieve honeycomb membrane module: configuration and membrane characterization. Carbon, 2005, 43, 809-819.	5.4	23
135	Water adsorption on carbon molecular sieve membranes: Experimental data and isotherm model. Carbon, 2005, 43, 2769-2779.	5.4	82
136	"Comparison of finite difference and control volume methods for solving differential equations―by G.G. Botte, J.A. Ritter, R.E. White, 24 (2000) 2633–2654. Computers and Chemical Engineering, 2005, 29, 2256-2258.	2.0	2
137	Simulation of separation processes using finite volume method. Computers and Chemical Engineering, 2005, 30, 83-98.	2.0	54
138	On the optimization of cyclic adsorption separation processes. AICHE Journal, 2005, 51, 1377-1395.	1.8	42
139	High-order approximations for intra-particle mass transfer. Chemical Engineering Science, 2004, 59, 4393-4399.	1.9	8
140	Carbon molecular sieve membranesSorption, kinetic and structural characterization. Journal of Membrane Science, 2004, 241, 275-287.	4.1	113
141	Adaptive multiresolution approach for two-dimensional PDEs. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 405-425.	3.4	18
142	2-D wavelet-based adaptive-grid method for the resolution of PDEs. AICHE Journal, 2003, 49, 706-717.	1.8	6
143	Solution of hyperbolic PDEs using a stable adaptive multiresolution method. Chemical Engineering Science, 2003, 58, 1777-1792.	1.9	21
144	Cyclic adsorption separation processes: analysis strategy and optimization procedure. Chemical Engineering Science, 2003, 58, 3143-3158.	1.9	52

#	Article	IF	CITATIONS
145	Wavelet-based adaptive grid method for the resolution of nonlinear PDEs. AICHE Journal, 2002, 48, 774-785.	1.8	25
146	Modeling catalytic membrane reactors using an adaptive wavelet-based collocation method. Journal of Membrane Science, 2002, 208, 57-68.	4.1	13
147	Adaptive multiresolution approach for solution of hyperbolic PDEs. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 3909-3928.	3.4	31
148	Considerations on the performance of hollow-fiber modules with glassy polymeric membranes. Journal of Membrane Science, 2001, 188, 263-277.	4.1	3
149	An approach for the optimization of transient diffusion cell measurements. Canadian Journal of Chemical Engineering, 2001, 79, 840-845.	0.9	2
150	Using wavelets for solving PDEs: an adaptive collocation method. Chemical Engineering Science, 2001, 56, 3305-3309.	1.9	36
151	Diffusion of Cyclohexane and Alkylcyclohexanes in Silicalite. Journal of Physical Chemistry B, 1998, 102, 2317-2324.	1.2	40
152	Study of Molecular Transport in Beds of Zeolite Crystallites:Â Semiquantitative Modeling of 129Xe NMR Experiments. Journal of Physical Chemistry B, 1997, 101, 2277-2284.	1.2	11
153	Transport ofn-paraffins in zeolite T. AICHE Journal, 1996, 42, 68-86.	1.8	28