List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/452462/publications.pdf Version: 2024-02-01

		172457	168389
111	3,409	29	53
papers	citations	h-index	g-index
111	111	111	3550
all docs	docs citations	times ranked	citing authors

ENÃOAS COMES-EU HO

#	Article	IF	CITATIONS
1	Metabolomic profiles exhibit the influence of endoplasmic reticulum stress on sorghum seedling growth over time. Plant Physiology and Biochemistry, 2022, 170, 192-205.	5.8	3
2	Silicon Supplementation Induces Physiological and Biochemical Changes That Assist Lettuce Salinity Tolerance. Silicon, 2021, 13, 4075-4089.	3.3	9
3	H2O2 priming promotes salt tolerance in maize by protecting chloroplasts ultrastructure and primary metabolites modulation. Plant Science, 2021, 303, 110774.	3.6	26
4	Differential responses of dwarf cashew clones to salinity are associated to osmotic adjustment mechanisms and enzymatic antioxidative defense. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20180534.	0.8	3
5	H2O2 priming induces proteomic responses to defense against salt stress in maize. Plant Molecular Biology, 2021, 106, 33-48.	3.9	9
6	Nitrate and Ammonium Nutrition Modulates the Photosynthetic Performance and Antioxidant Defense in Salt-Stressed Grass Species. Journal of Soil Science and Plant Nutrition, 2021, 21, 3016-3029.	3.4	4
7	Sodium uptake and transport regulation, and photosynthetic efficiency maintenance as the basis of differential salt tolerance in rice cultivars. Environmental and Experimental Botany, 2021, 192, 104654.	4.2	13
8	Salt-Acclimation Physiological Mechanisms at the Vegetative Stage of Cowpea Genotypes in Soils from a Semiarid Region. Journal of Soil Science and Plant Nutrition, 2021, 21, 3530-3543.	3.4	3
9	Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Brazilian Journal of Microbiology, 2020, 51, 243-253.	2.0	35
10	Ammonium nutrition modulates K ⁺ and N uptake, transport and accumulation during salt stress acclimation of sorghum plants. Archives of Agronomy and Soil Science, 2020, 66, 1991-2004.	2.6	10
11	Combined NaCl and DTT diminish harmful ER-stress effects in the sorghum seedlings CSF 20 variety. Plant Physiology and Biochemistry, 2020, 147, 223-234.	5.8	7
12	New insights into molecular targets of salt tolerance in sorghum leaves elicited by ammonium nutrition. Plant Physiology and Biochemistry, 2020, 154, 723-734.	5.8	11
13	Metabolic changes associated with differential salt tolerance in sorghum genotypes. Planta, 2020, 252, 34.	3.2	28
14	Osmolyte accumulation in leaves and Na + exclusion by roots in two salt–treated forage grasses. Grassland Science, 2020, 66, 231-237.	1.1	1
15	The influence of dissolved oxygen around rice roots on salt tolerance during pre-tillering and tillering phases. Environmental and Experimental Botany, 2020, 178, 104169.	4.2	6
16	Solutos orgânicos e inorgânicos em Salicornia neei Lag. sob lâminas de irrigação e adubação no semiárido cearense. Revista Verde De Agroecologia E Desenvolvimento Sustentável, 2020, 15, 360-367.	0.1	0
17	Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environmental and Experimental Botany, 2019, 167, 103870.	4.2	46
18	Sulfur-induced salinity tolerance in lettuce is due to a better P and K uptake, lower Na/K ratio and an efficient antioxidative defense system. Scientia Horticulturae, 2019, 257, 108764.	3.6	16

#	Article	IF	CITATIONS
19	Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Reports, 2019, 38, 403-416.	5.6	68
20	Silicon modulates the activity of antioxidant enzymes and nitrogen compounds in sunflower plants under salt stress. Archives of Agronomy and Soil Science, 2019, 65, 1237-1247.	2.6	27
21	Recovery and germinative response of Amaranthus deflexus L. seeds under different levels of water stress and luminosities. Comunicata Scientiae, 2019, 9, 603-612.	0.4	1
22	Research Article Differential proteomics in contrasting cowpea genotypes submitted to different water regimes. Genetics and Molecular Research, 2019, 18, .	0.2	4
23	Salt Tolerance Induced by Exogenous Proline in Maize Is Related to Low Oxidative Damage and Favorable Ionic Homeostasis. Journal of Plant Growth Regulation, 2018, 37, 911-924.	5.1	60
24	Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H 2 O 2 production. Environmental and Experimental Botany, 2018, 145, 75-86.	4.2	66
25	Growth and photosynthetic parameters of saccharine sorghum plants subjected to salinity. Acta Scientiarum - Agronomy, 2018, 41, 42607.	0.6	7
26	Inducing salt tolerance in castor bean through seed priming. Australian Journal of Crop Science, 2018, 12, 943-953.	0.3	6
27	Nitrogen assimilation pathways and ionic homeostasis are crucial for photosynthetic apparatus efficiency in salt-tolerant sunflower genotypes. Plant Growth Regulation, 2018, 86, 375-388.	3.4	8
28	Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate. New Phytologist, 2018, 219, 1252-1262.	7.3	35
29	Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. Journal of Plant Physiology, 2017, 212, 69-79.	3.5	81
30	Effects of organic vs. conventional farming systems on quality and antioxidant metabolism of passion fruit during maturation. Scientia Horticulturae, 2017, 222, 84-89.	3.6	48
31	Integrative Control Between Proton Pumps and SOS1 Antiporters in Roots is Crucial for Maintaining Low Na+ Accumulation and Salt Tolerance in Ammonium-Supplied Sorghum bicolor. Plant and Cell Physiology, 2017, 58, 522-536.	3.1	56
32	Putative role of glutamine in the activation of CBL/CIPK signalling pathways during salt stress in sorghum. Plant Signaling and Behavior, 2017, 12, e1361075.	2.4	24
33	Optimized acid hydrolysis of the polysaccharides from the seaweed <i>Solieria filiformis</i> (Kützing) P.W. Gabrielson for bioethanol production. Acta Scientiarum - Biological Sciences, 2017, 39, 423.	0.3	4
34	Physicochemical Properties of Edible Seed Hemicelluloses. Open Access Library Journal (oalib), 2017, 04, 1-14.	0.2	7
35	LEAF GAS EXCHANGE AND NUTRIENTS ACCUMULATION IN COWPEA PLANTS UNDER DIFFERENT MANAGEMENT STRATEGIES WITH BRACKISH WATER. Irriga, 2017, 22, 129-139.	0.1	0
36	Increased drought tolerance in maize plants induced by H2O2 is closely related to an enhanced enzymatic antioxidant system and higher soluble protein and organic solutes contents. Theoretical and Experimental Plant Physiology, 2016, 28, 297-306.	2.4	18

#	Article	IF	CITATIONS
37	Ammonium improves tolerance to salinity stress in Sorghum bicolor plants. Plant Growth Regulation, 2016, 78, 121-131.	3.4	61
38	Organic solutes in coconut palm seedlings under water and salt stresses. Revista Brasileira De Engenharia Agricola E Ambiental, 2016, 20, 1002-1007.	1.1	4
39	How are germination performance and seedling establishment under abiotic stress improved by seed priming? A review. Australian Journal of Crop Science, 2016, 10, 1047-1051.	0.3	6
40	Ultrastructural and biochemical changes induced by salt stress in Jatropha curcas seeds during germination and seedling development. Functional Plant Biology, 2015, 42, 865.	2.1	21
41	β-galactosidases from cowpea stems: properties and gene expression under conditions of salt stress. Revista Ciencia Agronomica, 2014, 45, 794-804.	0.3	3
42	Salt stress tolerance in cowpea is poorly related to the ability to cope with oxidative stress. Acta Botanica Croatica, 2014, 73, 78-89.	0.7	6
43	Plasma membrane H ⁺ -ATPase in sorghum roots as affected by potassium deficiency and nitrogen sources. Biologia Plantarum, 2014, 58, 507-514.	1.9	4
44	Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculata cultivars differing in salt tolerance. Plant Cell Reports, 2014, 33, 1289-1306.	5.6	38
45	Nitrate: ammonium nutrition alleviates detrimental effects of salinity by enhancing photosystem II efficiency in sorghum plants. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 8-12.	1.1	15
46	Germination and Seedling Establishment of Castor CV. BRS-ENERGY in Saline Environment. , 2014, , .		0
47	Increased Na+ and Clâ ^{~,} accumulation induced by NaCl salinity inhibits cotyledonary reserve mobilization and alters the source-sink relationship in establishing dwarf cashew seedlings. Acta Physiologiae Plantarum, 2013, 35, 2171-2182.	2.1	21
48	Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants. Acta Physiologiae Plantarum, 2013, 35, 841-852.	2.1	21
49	Crescimento e respostas fisiológicas do meloeiro inoculado com fungos micorrÃzicos arbusculares sob estresse salino. Semina:Ciencias Agrarias, 2013, 34, .	0.3	8
50	Crescimento e acúmulo de Ãons em plantas de cajueiro anão precoce em diferentes tempos de exposição à salinidade. Semina:Ciencias Agrarias, 2013, 34, 3341.	0.3	2
51	Nitrato modula os teores de cloreto e compostos nitrogenados em plantas de milho submetidas Ã salinidade. Bragantia, 2013, 72, 10-19.	1.3	10
52	Enhanced salt tolerance in maize plants induced by H2O2 leaf spraying is associated with improved gas exchange rather than with non-enzymatic antioxidant system. Theoretical and Experimental Plant Physiology, 2013, 25, 251-260.	2.4	58
53	The Impact of Organic Farming on Quality of Tomatoes Is Associated to Increased Oxidative Stress during Fruit Development. PLoS ONE, 2013, 8, e56354.	2.5	114
54	Micronutrients affecting leaf biochemical responses during pineapple development. Theoretical and Experimental Plant Physiology, 2013, 25, 70-78.	2.4	4

#	Article	IF	CITATIONS
55	Seed priming effects on growth, lipid peroxidation, and activity of ROS scavenging enzymes in NaCl-stressed sorghum seedlings from aged seeds. Journal of Plant Interactions, 2012, 7, 151-159.	2.1	25
56	Supplemental Ca2+ does not improve growth but it affects nutrient uptake in NaCl-stressed cowpea plants. Brazilian Journal of Plant Physiology, 2012, 24, 9-18.	0.5	9
57	Seed reserve composition and mobilization during germination and early seedling establishment of Cereus jamacaru D.C. ssp. jamacaru (Cactaceae). Anais Da Academia Brasileira De Ciencias, 2012, 84, 823-832.	0.8	38
58	Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry, 2012, 56, 62-71.	5.8	97
59	Cereus jamacaru seed germination and initial seedling establishment as a function of light and temperature conditions. Scientia Agricola, 2012, 69, 70-74.	1.2	8
60	NH4+-stimulated low-K+ uptake is associated with the induction of H+ extrusion by the plasma membrane H+-ATPase in sorghum roots under K+ deficiency. Journal of Plant Physiology, 2011, 168, 1617-1626.	3.5	18
61	Purification and characterization of cytosolic and cell wall β-galactosidases from Vigna unguiculata stems. Brazilian Journal of Plant Physiology, 2011, 23, 5-14.	0.5	4
62	Fruit size and quality of pineapples cv. Vitória in response to micronutrient doses and way of application and to soil covers. Revista Brasileira De Fruticultura, 2011, 33, 505-510.	0.5	4
63	Efeito da nutrição de nitrato na tolerância de plantas de sorgo sudão à salinidade. Revista Ciencia Agronomica, 2011, 42, 675-683.	0.3	23
64	Cultivo hidropônico de plântulas de sorgo sob estresse salino com sementes envelhecidas artificialmente e osmocondicionadas. Ciencia Rural, 2011, 41, 10-16.	0.5	0
65	Accumulation of organic and inorganic solutes in NaCl-stressed sorghum seedlings from aged and primed seeds. Scientia Agricola, 2011, 68, 632-637.	1.2	19
66	Efeitos do H2O2 no crescimento e acúmulo de solutos em plantas de milho sob estresse salino. Revista Ciencia Agronomica, 2011, 42, 373-381.	0.3	15
67	Avaliação citoquÃmica durante a germinação de sementes de sorgo envelhecidas artificialmente e osmocondicionadas, sob salinidade. Revista Ciencia Agronomica, 2011, 42, 223-231.	0.3	6
68	Respostas de crescimento e fisiologia do milho submetido a estresse salino com diferentes espaçamentos de cultivo. Revista Brasileira De Engenharia Agricola E Ambiental, 2011, 15, 365-370.	1.1	18
69	Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regulation, 2011, 65, 55-63.	3.4	60
70	Salt tolerance is unrelated to carbohydrate metabolism in cowpea cultivars. Acta Physiologiae Plantarum, 2011, 33, 887-896.	2.1	7
71	O estresse salino retarda o desenvolvimento morfofisiológico e a ativação de galactosidases de parede celular em caules de Vigna unguiculata. Acta Botanica Brasilica, 2011, 25, 17-24.	0.8	2
72	Caracterização fÃsica de pedúnculos de clones de cajueiro anão precoce em diferentes estádios de maturação. Revista Ciencia Agronomica, 2011, 42, 914-920.	0.3	7

#	Article	IF	CITATIONS
73	Efeitos do estresse salino na germinação, emergência e estabelecimento da plântula de cajueiro anão precoce. Revista Ciencia Agronomica, 2011, 42, 993-999.	0.3	13
74	Estabelecimento de plântulas de sorgo oriundas de sementes osmocondicionadas de diferentes qualidades fisiológicas. Revista Brasileirade Ciencias Agrarias, 2011, 6, 223-229.	0.2	3
75	ECOFISIOLOGIA DA GERMINAÇÃO, ESTABELECIMENTO DE PLÃ,NTULAS E PRODUÇÃO DE MUDAS: artigos cientÃficos. , 2011, , .		0
76	Produção e fisiologia de plantas de cajueiro anão precoce sob condições de sequeiro e irrigado. Revista Brasileira De Engenharia Agricola E Ambiental, 2011, 15, 1014-1020.	1.1	0
77	Salt Tolerance is Associated with Differences in Ion Accumulation, Biomass Allocation and Photosynthesis in Cowpea Cultivars. Journal of Agronomy and Crop Science, 2010, 196, 193-204.	3.5	56
78	Gm-TX, a new toxic protein from soybean (Glycine max) seeds with potential for controlling insect pests. Process Biochemistry, 2010, 45, 634-640.	3.7	2
79	Pretreatment with H2O2 in maize seeds: effects on germination and seedling acclimation to salt stress. Brazilian Journal of Plant Physiology, 2010, 22, 103-112.	0.5	43
80	Deficiência nutricional em plântulas de feijão-de-corda decorrente da omissão de macro e micronutrientes. Revista Ciencia Agronomica, 2010, 41, 326-333.	0.3	9
81	Trocas gasosas em folhas de sol e sombreadas de cajueiro anão em diferentes regimes hÃdricos. Revista Ciencia Agronomica, 2010, 41, 654-663.	0.3	17
82	Efeito do condicionamento osmótico na germinação e vigor de sementes de sorgo com diferentes qualidades fisiológicas. Revista Brasileira De Sementes = Brazilian Seed Journal, 2010, 32, 25-34.	0.5	11
83	Salinity Effects on Germination and Establishment of Sorghum Seedlings From Artificially Aged and Primed Seeds. Journal of New Seeds, 2010, 11, 399-411.	0.3	8
84	Physiologic responses of precocious dwarf cashew at different levels of salinity. Revista Ciencia Agronomica, 2010, 41, .	0.3	9
85	Germinação e vigor de sementes de sorgo forrageiro sob estresse hÃdrico e salino. Revista Brasileira De Sementes = Brazilian Seed Journal, 2009, 31, 48-56.	0.5	25
86	Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes. Journal of Plant Interactions, 2009, 4, 137-144.	2.1	47
87	Salt-induced changes on H+-ATPase activity, sterol and phospholipid content and lipid peroxidation of root plasma membrane from dwarf-cashew (Anacardium occidentale L.) seedlings. Plant Growth Regulation, 2009, 59, 125-135.	3.4	36
88	Trocas gasosas e teores de minerais no feijão-de-corda irrigado com água salina em diferentes estádios. Revista Brasileira De Engenharia Agricola E Ambiental, 2009, 13, 873-881.	1.1	15
89	Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Reports, 2008, 27, 147-157.	5.6	57
90	Physiological and biochemical changes occurring in dwarf-cashew seedlings subjected to salt stress. Brazilian Journal of Plant Physiology, 2008, 20, 105-118.	0.5	22

#	Article	IF	CITATIONS
91	Physiology of cashew plants grown under adverse conditions. Brazilian Journal of Plant Physiology, 2007, 19, 449-461.	0.5	47
92	Crescimento, partição de matéria seca e retenção de Na+, K+ e Cl- em dois genótipos de sorgo irrigados com águas salinas. Revista Brasileira De Ciencia Do Solo, 2007, 31, 961-971.	1.3	37
93	Morpho-physiological responses of cowpea leaves to salt stress. Brazilian Journal of Plant Physiology, 2006, 18, 455-465.	0.5	41
94	Influência do acúmulo e distribuição de Ãons sobre a aclimatação de plantas de sorgo e feijão-de-corda, ao estresse salino. Revista Brasileira De Engenharia Agricola E Ambiental, 2006, 10, 804-810.	1.1	16
95	Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 2006, 56, 87-94.	4.2	678
96	Antioxidant-enzymatic system of two sorghum genotypes differing in salt tolerance. Brazilian Journal of Plant Physiology, 2005, 17, 353-362.	0.5	44
97	Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. Journal of Plant Physiology, 2005, 162, 1114-1122.	3.5	211
98	Crescimento e fotossÃntese de plantas jovens de cajueiro anão precoce sob estresse salino. Revista Brasileira De Engenharia Agricola E Ambiental, 2005, 9, 90-94.	1.1	9
99	Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brazilian Journal of Plant Physiology, 2004, 16, 31-38.	0.5	139
100	Growth and Protein Pattern in Cowpea Seedlings Subjected to Salinity. Biologia Plantarum, 2003, 46, 341-346.	1.9	19
101	Physiological responses of NaCl stressed cowpea plants grown in nutrient solution supplemented with CaCl2. Brazilian Journal of Plant Physiology, 2003, 15, 99-105.	0.5	48
102	Crescimento e nÃveis de solutos orgânicos e inorgânicos em cultivares de Vigna unguiculata submetidos à salinidade. Revista Brasileira De Botanica, 2003, 26, 289-297.	1.3	33
103	Isolation and partial purification of beta-galactosidases from cotyledons of two cowpea cultivars. Brazilian Journal of Plant Physiology, 2001, 13, 251-261.	0.1	7
104	Partial purification and characterization of ribonucleases from roots, stem and leaves of cowpea. Brazilian Journal of Plant Physiology, 2001, 13, 357-364.	0.1	4
105	Multiple forms of cotyledonary b-galactosidases from Vigna unguiculata quiescent seeds. Revista Brasileira De Botanica, 2000, 23, 69.	1.3	6
106	Purification and Properties of a Ribonuclease from Cowpea Cotyledons. Biologia Plantarum, 1999, 42, 525-532.	1.9	11
107	Tissue distribution and deposition pattern of a cellulosic parenchyma-specific protein from cassava roots. Brazilian Archives of Biology and Technology, 1998, 41, 1-9.	0.5	6
108	Isolation and characterization of a reserve protein from the seeds of Opuntia ficus-indica (Cactaceae). Brazilian Journal of Medical and Biological Research, 1998, 31, 757-761.	1.5	25

#	Article	IF	CITATIONS
109	Effect of Salinity on Ribonuclease Activity of Vigna unguiculata Cotyledons during Germination. Journal of Plant Physiology, 1988, 132, 307-311.	3.5	32
110	Effects of NaCl salinity in vivo and in vitro on ribonuclease activity of Vigna unguiculata cotyledons during germination. Physiologia Plantarum, 1983, 59, 183-188.	5.2	31
111	Comparison Between the Water and Salt Stress Effects on Plant Growth and Development. , 0, , .		86