
Tze Wood Ching

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4524228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Identification of Airgap Flux Density Harmonics Contributing to Back EMF in Dual-Permanent-Magnet-Excited Machine. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	2
2	Output-Controllable Efficiency-Optimized Wireless Power Transfer Using Hybrid Modulation. IEEE Transactions on Industrial Electronics, 2022, 69, 4627-4636.	5.2	19
3	A Dual-Stator HTS Modular Linear Vernier Motor for Long Stroke Applications. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-8.	1.1	4
4	Power Factor Analysis of Dual-Stator Permanent Magnet Vernier Motor With Consideration on Turn-Number Assignment of Inner and Outer Stator Windings. IEEE Transactions on Magnetics, 2021, 57, 1-5.	1.2	17
5	Analysis of Air-Gap Field Modulation in Parallel-Hybrid-Excited Harmonic-Shift Machines. IEEE Transactions on Magnetics, 2021, 57, 1-6.	1.2	4
6	Challenges Faced by Electric Vehicle Motors and Their Solutions. IEEE Access, 2021, 9, 5228-5249.	2.6	71
7	A Magnetic-Differential Double-Rotor Flux-Reversal Permanent-Magnet Motor for Electric Vehicles. , 2021, , .		3
8	Design and Analysis of a Magnetless Linear Variable Reluctance Motor With Modular Mover Units for Electric Propulsion. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	6
9	Quantitative Comparison of Wireless Power Transfer Using HTS and Copper Coils. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.1	5
10	Multi-Objective Optimization of a Direct-Drive Dual-Structure Permanent Magnet Machine. IEEE Transactions on Magnetics, 2019, 55, 1-4.	1.2	14
11	Wireless Secondary-Converterless Bipolar Drive for AC Application. , 2019, , .		1
12	Finite-Control-Set Model Predictive Flux-Linkage Control without Weighting Factor for Dual-Permanent-Magnet-Excited Motor Drives. , 2019, , .		0
13	Quantitative Comparison of Two Typical Field-Modulated Permanent Magnet Machines: Unidirectional Field Modulation Effect versus Bidirectional Field Modulation Effect. , 2019, , .		2
14	A New Dual-Permanent-Magnet-Excited Motor with Hybrid Stator Configuration for Direct-Drive Applications. , 2019, , .		3
15	A Superconducting Vernier Motor for Electric Ship Propulsion. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-6.	1.1	19
16	A Phase-Decoupled Flux-Reversal Linear Generator for Low-Speed Oscillatory Energy Conversion Using Impedance Matching Strategy. IEEE Transactions on Industrial Electronics, 2018, 65, 7590-7599.	5.2	8
17	Design and Analysis of a New Brushless Electrically Excited Claw-Pole Generator for Hybrid Electric Vehicle. IEEE Transactions on Magnetics, 2018, 54, 1-5.	1.2	16
18	A New Magnetic Field Modulation Type of Brushless Double-Fed Machine. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	3

TZE WOOD CHING

#	Article	IF	CITATIONS
19	A Superconducting Linear Variable Reluctance Machine for Urban Transportation Systems. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	7
20	Design and Analysis of Partitioned-Stator Switched-Flux Dual-Excitation Machine for Hybrid Electric Vehicles. World Electric Vehicle Journal, 2018, 9, 40.	1.6	1
21	Quantitative Comparison of Novel Dual-PM Linear Motors for Ropeless Elevator System. IEEE Transactions on Magnetics, 2018, 54, 1-6.	1.2	22
22	A New Double-Winding Vernier Permanent Magnet Wind Power Generator for Hybrid AC/DC Microgrid Application. IEEE Transactions on Magnetics, 2018, 54, 1-5.	1.2	20
23	Overview of Linear Motors for Transportation Applications. , 2018, , .		10
24	Comparison of Induction Heating for Pans and Woks Using Planar Cooktops. , 2018, , .		2
25	Design and Experiment of an HTS Flux-Switching Machine With Stationary Seal. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	13
26	A New High-Temperature Superconducting Vernier Permanent-Magnet Machine for Wind Turbines. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	15
27	A New Linear Vernier Permanent-Magnet Machine Using High-Temperature Superconducting DC Field Excitation. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	5
28	Time-Division Multiplexing Wireless Power Transfer for Separately Excited DC Motor Drives. IEEE Transactions on Magnetics, 2017, 53, 1-5.	1.2	66
29	A Hybrid-Excited Vernier Permanent Magnet Machine Using Homopolar Topology. IEEE Transactions on Magnetics, 2017, 53, 1-7.	1.2	25
30	Fabrication and Experiment of Racetrack HTS Magnet for Stator Field-Excitation HTS Machine. IEEE Transactions on Applied Superconductivity, 2017, , 1-1.	1.1	6
31	A new segmented-stator linear vernier permanent magnet machine for direct-drive applications. , 2017, , ·		2
32	Power Factor Improvement of a Linear Vernier Permanent-Magnet Machine Using Auxiliary DC Field Excitation. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	67
33	On-board electromagnetic energy regeneration for electric vehicles. , 2016, , 155-185.		Ο
34	Ultrahigh-speed flywheel energy storage for electric vehicles. , 2016, , 69-96.		0
35	Dead-beat direct torque and flux control based on sliding-mode stator flux observer for PMSM in electric vehicles. , 2015, , .		6
36	A six-phase transverse-flux-reversal linear machine for low-speed reciprocating power generation. , 2015, , .		1

TZE WOOD CHING

#	Article	IF	CITATIONS
37	Comparison of a novel modular and complementary linear flux-switching permanent magnet motor with different phase arrangements. , 2015, , .		0
38	Electromagnetic Performance Analysis of Novel HTS Doubly Fed Flux-Modulated Machines. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.1	4
39	A New Magnetless Flux-Reversal HTS Machine for Direct-Drive Application. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	31
40	Design and Analysis of a New HTS Axial-Field Flux-Switching Machine. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	22
41	Modeling and Analysis of a Linear Stator Permanent-Magnet Vernier HTS Machine. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.1	21
42	A novel claw pole memory machine for wide-speed-range applications. Journal of Applied Physics, 2015, 117, 17A725.	1.1	2
43	A positioning-tolerant wireless charging system for roadway-powered electric vehicles. Journal of Applied Physics, 2015, 117, .	1.1	16
44	Modular inductive power transmission system for high misalignment electric vehicle application. Journal of Applied Physics, 2015, 117, .	1.1	29
45	Multiple-receptor wireless power transfer for magnetic sensors charging on Mars via magnetic resonant coupling. Journal of Applied Physics, 2015, 117, .	1.1	21
46	Wireless power transfer and fault diagnosis of high-voltage power line via robotic bird. Journal of Applied Physics, 2015, 117, .	1.1	18
47	A novel double-sided flux-switching permanent magnet linear motor. Journal of Applied Physics, 2015, 117, .	1.1	17
48	Design and Analysis of a New HTS Double-Stator Doubly Fed Wind Generator. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.1	10
49	Performance Evaluation of Electric Vehicles in Macau. Journal of Asian Electric Vehicles, 2014, 12, 1673-1678.	0.4	1
50	Overview of Wireless Charging Technologies for Electric Vehicles. Journal of Asian Electric Vehicles, 2014, 12, 1679-1685.	0.4	52
51	Performance comparisons of emerging move-and-charge technologies for electric vehicles. , 2014, , .		0
52	Magnetic Vibration Analysis of a New DC-Excited Multitoothed Switched Reluctance Machine. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	19
53	Mechanical Offset for Torque Ripple Reduction for Magnetless Double-Stator Doubly Salient Machine. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	20
54	A High-Torque Magnetless Axial-Flux Doubly Salient Machine for In-Wheel Direct Drive Applications. IEEE Transactions on Magnetics, 2014, 50, 1-5.	1.2	26

TZE WOOD CHING

#	Article	IF	CITATIONS
55	Quantitative Analysis of Mutual Inductance for Optimal Wireless Power Transfer via Magnetic Resonant Coupling. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	42
56	A transverse flux permanent magnet linear generator for hybrid electric vehicles. , 2013, , .		1
57	Stabilization of chaos in electric vehicle steering systems using induction motor. , 2013, , .		2
58	Review of wireless charging technologies for electric vehicles. , 2013, , .		17
59	Cost Analysis of Battery-powered Electric Vehicles in Macau. Journal of Asian Electric Vehicles, 2012, 10, 1619-1623.	0.4	2
60	Road testing of electric vehicle in Macau. , 2011, , .		5
61	Design of Electric Vehicle Charging Station in Macau. Journal of Asian Electric Vehicles, 2011, 9, 1453-1458.	0.4	12
62	Road Testing of Electric Vehicles in Macau. Journal of Asian Electric Vehicles, 2011, 9, 1491-1495.	0.4	7
63	Transition-mode dimmable LED driver for illumination applications. , 2010, , .		2
64	Review of Soft—Switching Technologies for High—Frequency Switched—Mode Power Conversion. International Journal of Electrical Engineering and Education, 2009, 46, 104-119.	0.4	1
65	Analysis of Soft-switching Converters for Switched Reluctance Motor Drives for Electric Vehicles. Journal of Asian Electric Vehicles, 2009, 7, 1199-1206.	0.4	1
66	Soft-switching Converters for Electric Vehicle Propulsion. Journal of Asian Electric Vehicles, 2007, 5, 1019-1026.	0.4	18
67	Four-quadrant Zero-current-transition Converter-fed Dc Motor Drives for Electric Propulsion. Journal of Asian Electric Vehicles, 2006, 4, 911-917.	0.4	16
68	Four-quadrant Zero-voltage-transition Converter-fed DC Motor Drives for Electric Propulsion. Journal of Asian Electric Vehicles, 2005, 3, 651-656.	0.4	8
69	A new two-quadrant zero-current transition converter for DC motor drives. International Journal of Electronics, 2001, 88, 719-735.	0.9	17
70	A new two-quadrant zero-voltage transition converter for DC motor drives. International Journal of Electronics, 1999, 86, 217-231.	0.9	15