
Wilko F A R Verbakel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4524146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determining Planning Priorities for SABR for Oligometastatic Disease: A Secondary Analysis of the SABR-COMET Phase II Randomized Trial. International Journal of Radiation Oncology Biology Physics, 2022, 114, 1016-1021.	0.4	8
2	Fast, automated knowledge-based treatment planning for selecting patients for proton therapy based on normal tissue complication probabilities. Advances in Radiation Oncology, 2022, 7, 100903.	0.6	6
3	The markerless lung target tracking AAPM Grand Challenge (MATCH) results. Medical Physics, 2022, 49, 1161-1180.	1.6	15
4	Influence of Beam Angle on Normal Tissue Complication Probability of Knowledge-Based Head and Neck Cancer Proton Planning. Cancers, 2022, 14, 2849.	1.7	1
5	Experimental and clinical studies on radiation and curcumin in human glioma. Journal of Cancer Research and Clinical Oncology, 2021, 147, 403-409.	1.2	9
6	Factors influencing multi-disciplinary tumor board recommendations in stage III non-small cell lung cancer. Lung Cancer, 2021, 152, 149-156.	0.9	11
7	Ultra-High Dose Rate Transmission Beam Proton Therapy for Conventionally Fractionated Head and Neck Cancer: Treatment Planning and Dose Rate Distributions. Cancers, 2021, 13, 1859.	1.7	22
8	Response to the Letter to the Editor "Application of the RATING score: In regards to Hansen et al.â€. Radiotherapy and Oncology, 2021, 158, 311.	0.3	1
9	National Protocol for Model-Based Selection for Proton Therapy in Head and Neck Cancer. International Journal of Particle Therapy, 2021, 8, 354-365.	0.9	32
10	Markerless Real-Time 3-Dimensional kV Tracking of Lung Tumors During Free Breathing Stereotactic Radiation Therapy. Advances in Radiation Oncology, 2021, 6, 100705.	0.6	12
11	Markerless 3D tumor tracking during single-fraction free-breathing 10MV flattening-filter-free stereotactic lung radiotherapy. Radiotherapy and Oncology, 2021, 164, 6-12.	0.3	8
12	Relationship between Treatment Plan Dosimetry, Toxicity, and Survival following Intensity-Modulated Radiotherapy, with or without Chemotherapy, for Stage III Inoperable Non-Small Cell Lung Cancer. Cancers, 2021, 13, 5923.	1.7	3
13	Using a systems-theoretic approach to analyze safety in radiation therapy-first steps and lessons learned. Safety Science, 2020, 122, 104519.	2.6	11
14	Bringing FLASH to the Clinic: Treatment Planning Considerations for Ultrahigh Dose-Rate Proton Beams. International Journal of Radiation Oncology Biology Physics, 2020, 106, 621-629.	0.4	87
15	Variation in current prescription practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer: Recommendations for prescribing and recording according to the ACROP guideline and ICRU report 91. Radiotherapy and Oncology, 2020, 142, 217-223.	0.3	29
16	Radiotherapy Treatment plannINg study Guidelines (RATING): A framework for setting up and reporting on scientific treatment planning studies. Radiotherapy and Oncology, 2020, 153, 67-78.	0.3	77
17	Is the introduction of more advanced radiotherapy techniques for locally-advanced head and neck cancer associated with improved quality of life and reduced symptom burden?. Radiotherapy and Oncology, 2020, 151, 298-303.	0.3	8
18	Urethra-Sparing Stereotactic Body Radiation Therapy for Prostate Cancer: Quality Assurance of a Randomized Phase 2 Trial. International Journal of Radiation Oncology Biology Physics, 2020, 108, 1047-1054.	0.4	17

#	Article	IF	CITATIONS
19	In Reply to Moeckli etÂal. International Journal of Radiation Oncology Biology Physics, 2020, 107, 1013-1014.	0.4	0
20	Targeted Intervention to Improve the Quality of Head and Neck Radiation Therapy Treatment Planning in the Netherlands: Short and Long-Term Impact. International Journal of Radiation Oncology Biology Physics, 2019, 105, 514-524.	0.4	11
21	Knowledge-Based Planning for Identifying High-Risk Stereotactic Ablative Radiation Therapy Treatment Plans for Lung Tumors Larger Than 5Acm. International Journal of Radiation Oncology Biology Physics, 2019, 103, 259-267.	0.4	13
22	In Regard to Keall etÂal. International Journal of Radiation Oncology Biology Physics, 2019, 103, 282-283.	0.4	2
23	Analysis of EORTC-1219-DAHANCA-29 trial plans demonstrates the potential of knowledge-based planning to provide patient-specific treatment plan quality assurance. Radiotherapy and Oncology, 2019, 130, 75-81.	0.3	24
24	American Association of Physicists in Medicine Task Group 263: Standardizing Nomenclatures in Radiation Oncology. International Journal of Radiation Oncology Biology Physics, 2018, 100, 1057-1066.	0.4	140
25	First Experience With Markerless Online 3D Spine Position Monitoring During SBRT Delivery Using a Conventional LINAC. International Journal of Radiation Oncology Biology Physics, 2018, 101, 1253-1258.	0.4	15
26	In Regard to Mohan etÂal. International Journal of Radiation Oncology Biology Physics, 2018, 101, 492-493.	0.4	1
27	Is accurate contouring of salivary and swallowing structures necessary to spare them in head and neck VMAT plans?. Radiotherapy and Oncology, 2018, 127, 190-196.	0.3	16
28	Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes. Medical Physics, 2018, 45, 92-100.	1.6	97
29	Automated Knowledge-Based Intensity-Modulated Proton Planning: An International Multicenter Benchmarking Study. Cancers, 2018, 10, 420.	1.7	21
30	Feasibility of markerless 3D position monitoring of the central airways using kilovoltage projection images: Managing the risks of central lung stereotactic radiotherapy. Radiotherapy and Oncology, 2018, 129, 234-241.	0.3	10
31	Markerless positional verification using template matching and triangulation of kV images acquired during irradiation for lung tumors treated in breath-hold. Physics in Medicine and Biology, 2018, 63, 115005.	1.6	24
32	Knowledge-based planning for stereotactic radiotherapy of peripheral early-stage lung cancer. Acta Oncológica, 2017, 56, 490-495.	0.8	14
33	Using a knowledge-based planning solution to select patients for proton therapy. Radiotherapy and Oncology, 2017, 124, 263-270.	0.3	40
34	Verifying tumor position during stereotactic body radiation therapy delivery using (limited-arc) cone beam computed tomography imaging. Radiotherapy and Oncology, 2017, 123, 355-362.	0.3	13
35	Stereotactic radiosurgery alone for multiple brain metastases? A review of clinical and technical issues. Neuro-Oncology, 2017, 19, ii2-ii15.	0.6	83
36	Use of Stereotactic Ablative Radiotherapy (SABR) in Non–Small Cell Lung Cancer Measuring More Than 5 cm. Journal of Thoracic Oncology, 2017, 12, 974-982.	0.5	42

#	Article	IF	CITATIONS
37	The TRENDY multi-center randomized trial on hepatocellular carcinoma – Trial QA including automated treatment planning and benchmark-case results. Radiotherapy and Oncology, 2017, 125, 507-513.	0.3	20
38	Can the probability of radiation esophagitis be reduced without compromising lung tumor control: A radiobiological modeling study. Acta Oncológica, 2016, 55, 926-930.	0.8	3
39	Stereotactic body radiotherapy for spine and bony pelvis using flattening filter free volumetric modulated arc therapy, 6D cone-beam CT and simple positioning techniques: Treatment time and patient stability. Acta OncolA3gica, 2016, 55, 795-798.	0.8	12
40	Detailed evaluation of an automated approach to interactive optimization for volumetric modulated arc therapy plans. Medical Physics, 2016, 43, 1818-1828.	1.6	13
41	Subsecond and Submillimeter Resolution Positional Verification for Stereotactic Irradiation of Spinal Lesions. International Journal of Radiation Oncology Biology Physics, 2016, 94, 1154-1162.	0.4	28
42	Outcomes of Hypofractionated High-Dose Radiotherapy in Poor-Risk Patients with "Ultracentral― Non–Small Cell Lung Cancer. Journal of Thoracic Oncology, 2016, 11, 1081-1089.	0.5	176
43	A longitudinal evaluation of improvements in radiotherapy treatment plan quality for head and neck cancer patients. Radiotherapy and Oncology, 2016, 119, 337-343.	0.3	12
44	Effect of Dosimetric Outliers on the Performance of a Commercial Knowledge-Based Planning Solution. International Journal of Radiation Oncology Biology Physics, 2016, 94, 469-477.	0.4	80
45	Comparison of organâ€atâ€risk sparing and plan robustness for spotâ€scanning proton therapy and volumetric modulated arc photon therapy in headâ€andâ€neck cancer. Medical Physics, 2015, 42, 6589-6598.	1.6	30
46	Is there a preferred IMRT technique for leftâ€breast irradiation?. Journal of Applied Clinical Medical Physics, 2015, 16, 197-205.	0.8	34
47	Can knowledge-based DVH predictions be used for automated, individualized quality assurance of radiotherapy treatment plans?. Radiation Oncology, 2015, 10, 234.	1.2	103
48	Evaluation of a Knowledge-Based Planning Solution for Head and Neck Cancer. International Journal of Radiation Oncology Biology Physics, 2015, 91, 612-620.	0.4	230
49	Improving radiotherapy planning for large volume lung cancer: A dosimetric comparison between hybrid-IMRT and RapidArc. Acta Oncológica, 2015, 54, 427-432.	0.8	13
50	Increasing the number of arcs improves head and neck volumetric modulated arc therapy plans. Acta Oncológica, 2015, 54, 283-287.	0.8	10
51	Sub-millimeter spine position monitoring for stereotactic body radiotherapy using offline digital tomosynthesis. Radiotherapy and Oncology, 2015, 115, 223-228.	0.3	12
52	Automatic interactive optimization for volumetric modulated arc therapy planning. Radiation Oncology, 2015, 10, 75.	1.2	35
53	Stereotactic ablative radiotherapy (SABR) for central lung tumors: Plan quality and long-term clinical outcomes. Radiotherapy and Oncology, 2015, 117, 64-70.	0.3	56
54	Markerless tracking of small lung tumors for stereotactic radiotherapy. Medical Physics, 2015, 42, 1640-1652.	1.6	36

#	Article	IF	CITATIONS
55	Changes in non-surgical management of stage III non-small cell lung cancer at a single institution between 2003 and 2010. Acta OncolÃ ³ gica, 2014, 53, 316-323.	0.8	11
56	Toward optimal organ at risk sparing in complex volumetric modulated arc therapy: An exponential tradeâ€off with target volume dose homogeneity. Medical Physics, 2014, 41, 021722.	1.6	29
57	Different treatment planning protocols can lead to large differences in organ at risk sparing. Radiotherapy and Oncology, 2014, 113, 267-271.	0.3	13
58	Stereotactic Ablative Radiation Therapy for Subcentimeter Lung Tumors: Clinical, Dosimetric, and Image Guidance Considerations. International Journal of Radiation Oncology Biology Physics, 2014, 90, 843-849.	0.4	12
59	A critical approach to the clinical use of deformable image registration software. In response to Meijneke et al Radiotherapy and Oncology, 2014, 112, 447-448.	0.3	2
60	Predictive parameters of symptomatic radiation pneumonitis following stereotactic or hypofractionated radiotherapy delivered using volumetric modulated arcs. Radiotherapy and Oncology, 2013, 109, 95-99.	0.3	55
61	Concurrent chemoradiotherapy for large-volume locally-advanced non-small cell lung cancer. Lung Cancer, 2013, 80, 62-67.	0.9	17
62	Dosimetric Impact of the Interplay Effect During Stereotactic Lung Radiation Therapy Delivery Using Flattening Filter-Free Beams and Volumetric Modulated Arc Therapy. International Journal of Radiation Oncology Biology Physics, 2013, 86, 743-748.	0.4	95
63	Comparable cell survival between high dose rate flattening filter free and conventional dose rate irradiation. Acta Oncológica, 2013, 52, 652-657.	0.8	35
64	Frameless high dose rate stereotactic lung radiotherapy: Intrafraction tumor position and delivery time. Radiotherapy and Oncology, 2013, 107, 419-422.	0.3	36
65	Digital tomosynthesis for verifying spine position during radiotherapy: a phantom study. Physics in Medicine and Biology, 2013, 58, 5717-5733.	1.6	12
66	Digital tomosynthesis (DTS) for verification of target position in early stage lung cancer patients. Medical Physics, 2013, 40, 091904.	1.6	14
67	Cone-beam computed tomography imaging in stereotactic body radiotherapy allows for more than target localization. Journal of Radiosurgery and SBRT, 2013, 2, 141-145.	0.2	1
68	Fast Arc Delivery for Stereotactic Body Radiotherapy of Vertebral and Lung Tumors. International Journal of Radiation Oncology Biology Physics, 2012, 83, e137-e143.	0.4	71
69	Clinical Application of a Novel Hybrid Intensity-Modulated Radiotherapy Technique for StageÂlll Lung Cancer and Dosimetric Comparison WithÂFour Other Techniques. International Journal of Radiation Oncology Biology Physics, 2012, 83, e297-e303.	0.4	42
70	An analysis of patient positioning during stereotactic lung radiotherapy performed without rigid external immobilization. Radiotherapy and Oncology, 2012, 104, 28-32.	0.3	37
71	Lung Density Changes After Stereotactic Radiotherapy: A Quantitative Analysis in 50 Patients. International Journal of Radiation Oncology Biology Physics, 2011, 81, 974-978.	0.4	90
72	Sparing the contralateral submandibular gland without compromising PTV coverage by using volumetric modulated arc therapy. Radiation Oncology, 2011, 6, 74.	1.2	20

#	Article	IF	CITATIONS
73	RapidArc Planning and Delivery in Patients With Locally Advanced Head-and-Neck Cancer Undergoing Chemoradiotherapy. International Journal of Radiation Oncology Biology Physics, 2011, 79, 429-435.	0.4	76
74	Radiological and Clinical Pneumonitis After Stereotactic Lung Radiotherapy: A Matched Analysis of Three-Dimensional Conformal and Volumetric-modulated Arc Therapy Techniques. International Journal of Radiation Oncology Biology Physics, 2011, 80, 506-513.	0.4	65
75	Dosimetric Impact of Interplay Effect on RapidArc Lung Stereotactic Treatment Delivery. International Journal of Radiation Oncology Biology Physics, 2011, 79, 305-311.	0.4	102
76	Volumetric Modulated Arc Therapy for Advanced Pancreatic Cancer. Strahlentherapie Und Onkologie, 2010, 186, 382-387.	1.0	39
77	New developments in arc radiation therapy: A review. Cancer Treatment Reviews, 2010, 36, 393-399.	3.4	109
78	Volumetric modulated arc therapy versus conventional intensity modulated radiation therapy for stereotactic spine radiotherapy: A planning study and early clinical data. Radiotherapy and Oncology, 2010, 94, 224-228.	0.3	70
79	The accuracy of frameless stereotactic intracranial radiosurgery. Radiotherapy and Oncology, 2010, 97, 390-394.	0.3	68
80	Stereotactic radiotherapy for peripheral lung tumors: A comparison of volumetric modulated arc therapy with 3 other delivery techniques. Radiotherapy and Oncology, 2010, 97, 437-442.	0.3	191
81	Treatment of large stage l–II lung tumors using stereotactic body radiotherapy (SBRT): Planning considerations and early toxicity. Radiotherapy and Oncology, 2010, 97, 431-436.	0.3	127
82	Volumetric Modulated Arc Radiotherapy for Vestibular Schwannomas. International Journal of Radiation Oncology Biology Physics, 2009, 74, 610-615.	0.4	82
83	Volumetric Intensity-Modulated Arc Therapy Vs. Conventional IMRT in Head-and-Neck Cancer: A Comparative Planning and Dosimetric Study. International Journal of Radiation Oncology Biology Physics, 2009, 74, 252-259.	0.4	382
84	Rapid delivery of stereotactic radiotherapy for peripheral lung tumors using volumetric intensity-modulated arcs. Radiotherapy and Oncology, 2009, 93, 122-124.	0.3	154