
Gustavo Arrizabalaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4523731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein control of membrane and organelle dynamics: Insights from the divergent eukaryote Toxoplasma gondii. Current Opinion in Cell Biology, 2022, 76, 102085.	2.6	3
2	The Tyrosine Phosphatase PRL Regulates Attachment of Toxoplasma gondii to Host Cells and Is Essential for Virulence. MSphere, 2022, 7, .	1.3	4
3	The Dually Localized EF-Hand Domain-Containing Protein TgEFP1 Regulates the Lytic Cycle of Toxoplasma gondii. Cells, 2022, 11, 1709.	1.8	7
4	The Secreted Acid Phosphatase Domain-Containing GRA44 from Toxoplasma gondii Is Required for c-Myc Induction in Infected Cells. MSphere, 2020, 5, .	1.3	24
5	Identification of Fis1 Interactors in Toxoplasma gondii Reveals a Novel Protein Required for Peripheral Distribution of the Mitochondrion. MBio, 2020, 11, .	1.8	23
6	Neighbors Working Together: a Toxoplasma Rhoptry Protein That Facilitates Dense Granule Protein Translocation into the Host Cell. MSphere, 2019, 4, .	1.3	0
7	A plasma membrane localized protein phosphatase in Toxoplasma gondii, PPM5C, regulates attachment to host cells. Scientific Reports, 2019, 9, 5924.	1.6	24
8	TgDrpC, an atypical dynaminâ€related protein in <i>Toxoplasma gondii, </i> is associated with vesicular transport factors and parasite division. Molecular Microbiology, 2019, 111, 46-64.	1.2	35
9	TgTKL1 Is a Unique Plant-Like Nuclear Kinase That Plays an Essential Role in Acute Toxoplasmosis. MBio, 2018, 9, .	1.8	15
10	Toxoplasma gondii-positive human sera recognise intracellular tachyzoites and bradyzoites with diverse patterns of immunoreactivity. International Journal for Parasitology, 2018, 48, 225-232.	1.3	9
11	A minimalistic approach to develop new anti-apicomplexa polyamines analogs. European Journal of Medicinal Chemistry, 2018, 143, 866-880.	2.6	6
12	Characterization of Plasmodium Atg3-Atg8 Interaction Inhibitors Identifies Novel Alternative Mechanisms of Action in Toxoplasma gondii. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	10
13	A novel dense granule protein, GRA41, regulates timing of egress and calcium sensitivity in <i>Toxoplasma gondii</i> . Cellular Microbiology, 2017, 19, e12749.	1.1	34
14	The common parasite <i>Toxoplasma gondii</i> induces prostatic inflammation and microglandular hyperplasia in a mouse model. Prostate, 2017, 77, 1066-1075.	1.2	15
15	The serine/threonine phosphatases of apicomplexan parasites. Molecular Microbiology, 2017, 106, 1-21.	1.2	33
16	Targeting of tailâ€anchored membrane proteins to subcellular organelles in <i>Toxoplasma gondii</i> . Traffic, 2017, 18, 149-158.	1.3	15
17	Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity. PLoS ONE, 2017, 12, e0188040.	1.1	10
18	TgATAT-Mediated α-Tubulin Acetylation Is Required for Division of the Protozoan Parasite Toxoplasma gondii. MSphere, 2016, 1, .	1.3	17

GUSTAVO ARRIZABALAGA

#	Article	IF	CITATIONS
19	Oxidative stress generated during monensin treatment contributes to altered Toxoplasma gondii mitochondrial function. Scientific Reports, 2016, 6, 22997.	1.6	56
20	Phosphorylation of a Myosin Motor by TgCDPK3 Facilitates Rapid Initiation of Motility during Toxoplasma gondii egress. PLoS Pathogens, 2015, 11, e1005268.	2.1	76
21	Guanabenz Repurposed as an Antiparasitic with Activity against Acute and Latent Toxoplasmosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 6939-6945.	1.4	47
22	The Calcium-Dependent Protein Kinase 3 of Toxoplasma Influences Basal Calcium Levels and Functions beyond Egress as Revealed by Quantitative Phosphoproteome Analysis. PLoS Pathogens, 2014, 10, e1004197.	2.1	81
23	A Forward Genetic Screen Reveals that Calcium-dependent Protein Kinase 3 Regulates Egress in Toxoplasma. PLoS Pathogens, 2012, 8, e1003049.	2.1	118
24	Analysis of Monensin Sensitivity in Toxoplasma gondii Reveals Autophagy as a Mechanism for Drug Induced Death. PLoS ONE, 2012, 7, e42107.	1.1	63
25	A Toxoplasma gondii protein with homology to intracellular type Na+/H+ exchangers is important for osmoregulation and invasion. Experimental Cell Research, 2011, 317, 1382-1396.	1.2	44
26	The Antibiotic Monensin Causes Cell Cycle Disruption of <i>Toxoplasma gondii</i> Mediated through the DNA Repair Enzyme TgMSH-1. Antimicrobial Agents and Chemotherapy, 2011, 55, 745-755.	1.4	25
27	Disruption of a mitochondrial MutS DNA repair enzyme homologue confers drug resistance in the parasite <i>Toxoplasma gondii</i> . Molecular Microbiology, 2009, 72, 425-441.	1.2	34
28	A Cluster of Four Surface Antigen Genes Specifically Expressed in Bradyzoites, <i>SAG2CDXY</i> , Plays an Important Role in <i>Toxoplasma gondii</i> Persistence. Infection and Immunity, 2008, 76, 2402-2410.	1.0	56
29	Toxoplasma gondii: Induction of egress by the potassium ionophore nigericin. International Journal for Parasitology, 2007, 37, 1559-1567.	1.3	39
30	A Toxoplasma gondii mutant defective in responding to calcium fluxes shows reduced in vivo pathogenicity. Molecular and Biochemical Parasitology, 2007, 155, 113-122.	0.5	20
31	lonophore-resistant mutant of Toxoplasma gondii reveals involvement of a sodium/hydrogen exchanger in calcium regulation. Journal of Cell Biology, 2004, 165, 653-662.	2.3	73
32	Role of calcium during Toxoplasma gondii invasion and egress. International Journal for Parasitology, 2004, 34, 361-368.	1.3	66
33	An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Molecular Microbiology, 2002, 43, 1309-1318.	1.2	110
34	Ionophore-Resistant Mutants of Toxoplasma gondii Reveal Host Cell Permeabilization as an Early Event in Egress. Molecular and Cellular Biology, 2000, 20, 9399-9408.	1.1	130