
Stephen R, Yant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4523581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sarcoma Derived from Cultured Mesenchymal Stem Cells. Stem Cells, 2007, 25, 371-379.	1.4	601
2	Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nature Genetics, 2000, 25, 35-41.	9.4	491
3	Extrachromosomal Recombinant Adeno-Associated Virus Vector Genomes Are Primarily Responsible for Stable Liver Transduction In Vivo. Journal of Virology, 2001, 75, 6969-6976.	1.5	417
4	The 37/67-Kilodalton Laminin Receptor Is a Receptor for Adeno-Associated Virus Serotypes 8, 2, 3, and 9. Journal of Virology, 2006, 80, 9831-9836.	1.5	356
5	High-Resolution Genome-Wide Mapping of Transposon Integration in Mammals. Molecular and Cellular Biology, 2005, 25, 2085-2094.	1.1	298
6	Antiviral Activity of Bictegravir (GS-9883), a Novel Potent HIV-1 Integrase Strand Transfer Inhibitor with an Improved Resistance Profile. Antimicrobial Agents and Chemotherapy, 2016, 60, 7086-7097.	1.4	215
7	Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature, 2020, 584, 614-618.	13.7	192
8	Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nature Biotechnology, 2002, 20, 999-1005.	9.4	184
9	Linear DNAs Concatemerize in Vivo and Result in Sustained Transgene Expression in Mouse Liver. Molecular Therapy, 2001, 3, 403-410.	3.7	179
10	High affinity YY1 binding motifs: identification of two core types (ACAT and CCAT) and distribution of potential binding sites within the human \hat{l}^2 globin cluster. Nucleic Acids Research, 1995, 23, 4353-4362.	6.5	149
11	Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. ELife, 2014, 3, e04114.	2.8	146
12	Mutational Analysis of the N-Terminal DNA-Binding Domain of Sleeping Beauty Transposase: Critical Residues for DNA Binding and Hyperactivity in Mammalian Cells. Molecular and Cellular Biology, 2004, 24, 9239-9247.	1.1	142
13	Helper-Independent sleeping beauty Transposon–Transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Molecular Therapy, 2003, 8, 654-665.	3.7	138
14	In Vivo Correction of Murine Tyrosinemia Type I by DNA-Mediated Transposition. Molecular Therapy, 2002, 6, 759-769.	3.7	137
15	Site-directed transposon integration in human cells. Nucleic Acids Research, 2007, 35, e50-e50.	6.5	129
16	Non-Catalytic Site HIV-1 Integrase Inhibitors Disrupt Core Maturation and Induce a Reverse Transcription Block in Target Cells. PLoS ONE, 2013, 8, e74163.	1.1	118
17	A highly potent long-acting small-molecule HIV-1 capsid inhibitor with efficacy in a humanized mouse model. Nature Medicine, 2019, 25, 1377-1384.	15.2	104
18	Tenofovir Alafenamide is Not a Substrate for Renal Organic Anion Transporters (Oats) and Does Not Exhibit Oat-Dependent Cytotoxicity. Antiviral Therapy, 2014, 19, 687-692.	0.6	87

Stephen R, Yant

#	Article	IF	CITATIONS
19	Nonhomologous-End-Joining Factors Regulate DNA Repair Fidelity during Sleeping Beauty Element Transposition in Mammalian Cells. Molecular and Cellular Biology, 2003, 23, 8505-8518.	1.1	79
20	Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells. Blood, 2006, 107, 4182-4188.	0.6	75
21	A Two-hybrid Screen Identifies Cathepsins B and L as Uncoating Factors for Adeno-associated Virus 2 and 8. Molecular Therapy, 2007, 15, 330-339.	3.7	74
22	Postintegrative Gene Silencing within the Sleeping Beauty Transposition System. Molecular and Cellular Biology, 2007, 27, 8824-8833.	1.1	66
23	Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors. Antimicrobial Agents and Chemotherapy, 2016, 60, 316-322.	1.4	59
24	TLR7 Agonist GS-9620 Is a Potent Inhibitor of Acute HIV-1 Infection in Human Peripheral Blood Mononuclear Cells. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	47
25	Somatic Integration From an Adenoviral Hybrid Vector into a Hot Spot in Mouse Liver Results in Persistent Transgene Expression Levels In Vivo. Molecular Therapy, 2007, 15, 146-156.	3.7	41
26	Evaluation of the Effect of Cobicistat on the <i>In Vitro</i> Renal Transport and Cytotoxicity Potential of Tenofovir. Antimicrobial Agents and Chemotherapy, 2013, 57, 4982-4989.	1.4	41
27	Cis-Acting Gene Regulatory Activities in the Terminal Regions of Sleeping Beauty DNA Transposon-Based Vectors. Human Gene Therapy, 2007, 18, 1193-1204.	1.4	39
28	Metabolism and Antiretroviral Activity of Tenofovir Alafenamide in CD4 ⁺ T-Cells and Macrophages from Demographically Diverse Donors. Antiviral Therapy, 2014, 19, 669-677.	0.6	37
29	Real-Time in Vivo Imaging of Stem Cells Following Transgenesis by Transposition. Molecular Therapy, 2005, 12, 42-48.	3.7	36
30	Correction of DNA Protein Kinase Deficiency by Spliceosome-mediated RNA Trans-splicing and Sleeping Beauty Transposon Delivery. Molecular Therapy, 2007, 15, 1273-1279.	3.7	24
31	Osteosarcoma Derived from Cultured Mesenchymal Stem Cells Blood, 2006, 108, 2554-2554.	0.6	21
32	Long-acting capsid inhibitor protects macaques from repeat SHIV challenges. Nature, 2022, 601, 612-616.	13.7	14
33	Simulating HIV Breakthrough and Resistance Development During Variable Adherence to Antiretroviral Treatment. Journal of Acquired Immune Deficiency Syndromes (1999), 2021, 86, 369-377.	0.9	8
34	Structural Determinants of Sleeping Beauty Transposase Activity. Molecular Therapy, 2016, 24, 1369-1377.	3.7	7
35	Rapid <i>In Vitro</i> Evaluation of Antiretroviral Barrier to Resistance at Therapeutic Drug Levels. AIDS Research and Human Retroviruses, 2016, 32, 1237-1247.	0.5	3
36	Forgiveness of INSTI-Containing Regimens at Drug Concentrations Simulating Variable Adherence <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, e0203821.	1.4	2

#	Article	IF	CITATIONS
37	Real-Time In Vivo Biodistribution of Multipotent Adult Progenitor Cells (MAPC): Role of the Immune System in MAPC Resistance in Non-Transplanted and Bone Marrow Transplanted Mice Blood, 2004, 104, 507-507.	0.6	ο
38	Mesenchymal Cancer Cells Can Arise from Ex Vivo Modified Mesenchymal Stem Cells Blood, 2005, 106, 4326-4326.	0.6	0