Lydia Guja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/452357/publications.pdf

Version: 2024-02-01

		840776	839539
18	635	11	18
papers	citations	h-index	g-index
20	20	20	1002
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The seed germination spectrum of alpine plants: a global metaâ€analysis. New Phytologist, 2021, 229, 3573-3586.	7.3	66
2	Polyploidy affects the seed, dormancy and seedling characteristics of a perennial grass, conferring an advantage in stressful climates. Plant Biology, 2020, 22, 500-513.	3.8	26
3	Multivariate drivers of diversity in temperate Australian native grasslands. Australian Journal of Botany, 2019, 67, 367.	0.6	12
4	Temperature variability drives within-species variation in germination strategy and establishment characteristics of an alpine herb. Oecologia, 2019, 189, 407-419.	2.0	19
5	Conservation implications of widespread polyploidy and apomixis: a case study in the genus Pomaderris (Rhamnaceae). Conservation Genetics, 2019, 20, 917-926.	1.5	4
6	A research agenda for seedâ€ŧrait functional ecology. New Phytologist, 2019, 221, 1764-1775.	7.3	218
7	Seed mass and elevation explain variation in seed longevity of Australian alpine species. Seed Science Research, 2018, 28, 319-331.	1.7	16
8	DNA ploidy variation and distribution in the Lepidosperma costale complex (Cyperaceae): implications for conservation and restoration in a biodiversity hotspot. Australian Journal of Botany, 2017, 65, 120.	0.6	5
9	Seeds at the forefront: synthesis of the inaugural National Seed Science Forum and future directions in Australian seed science. Australian Journal of Botany, 2017, 65, 601.	0.6	1
10	Seed dormancy and germination of three grassy woodland forbs required for diverse restoration. Australian Journal of Botany, 2017, 65, 625.	0.6	12
11	Maximizing Seed Resources for Restoration in an Uncertain Future. BioScience, 2016, 66, 73-79.	4.9	94
12	Guidelines for Using Movement Science to Inform Biodiversity Policy. Environmental Management, 2015, 56, 791-801.	2.7	36
13	Seeding the future – the issues of supply and demand in restoration in Australia. Ecological Management and Restoration, 2015, 16, 29-32.	1.5	48
14	Genetic diversity is a significant but not the only consideration for effective ex situ plant conservation: Response to Hoban and Schlarbaum. Biological Conservation, 2015, 184, 467-468.	4.1	8
15	Dispersal potential of Scaevola crassifolia (Goodeniaceae) is influenced by intraspecific variation in fruit morphology along a latitudinal environmental gradient. Australian Journal of Botany, 2014, 62, 56.	0.6	6
16	X-Ray Mapping Investigations of Salt Migration in Seeds through use of Window and Windowless Silicon Drift Detectors. Microscopy and Microanalysis, 2014, 20, 634-635.	0.4	2
17	Full spectrum X-ray mapping reveals differential localization of salt in germinating seeds of differing salt tolerance. Botanical Journal of the Linnean Society, 2013, 173, 129-142.	1.6	19
18	Buoyancy, salt tolerance and germination of coastal seeds: implications for oceanic hydrochorous dispersal. Functional Plant Biology, 2010, 37, 1175.	2.1	40