
Andrey Chistyakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4523101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of metal deposition order on the synergistic activity of Au–Cu and Au–Ce metal oxide catalysts for CO oxidation. Applied Catalysis B: Environmental, 2015, 168-169, 303-312.	10.8	51
2	Lignin as a Renewable Resource of Hydrocarbon Products and Energy Carriers (A Review). Petroleum Chemistry, 2020, 60, 227-243.	0.4	41
3	Novel gold catalysts for the direct conversion of ethanol into C3+ hydrocarbons. Journal of Catalysis, 2013, 297, 296-305.	3.1	33
4	Geological and petrological aspects of Ni-Cu-PGE mineralization in the early Paleoproterozoic Monchegorsk layered mafic-ultramafic complex, Kola Peninsula. Geology of Ore Deposits, 2014, 56, 147-168.	0.2	26
5	Utilization of petroleum residues under microwave irradiation. Chemical Engineering Journal, 2016, 292, 315-320.	6.6	26
6	Direct Au-Ni/Al 2 O 3 catalysed cross-condensation of ethanol with isopropanol into pentanol-2. Catalysis Today, 2017, 279, 124-132.	2.2	24
7	Petrology and Ni-Cu-Cr-PGE Mineralization of the Largest Mafic Pluton in Europe: The Early Proterozoic Burakovsky Layered Intrusion, Karelia, Russia. International Geology Review, 1995, 37, 509-525.	1.1	23
8	The Early Paleoproterozoic Monchegorsk layered mafite-ultramafite massif in the Kola Peninsula: Geology, petrology, and ore potential. Petrology, 2012, 20, 607-639.	0.2	23
9	The activity of mono- and bimetallic gold catalysts in the conversion of sub- and supercritical ethanol to butanol. Journal of Catalysis, 2019, 369, 501-517.	3.1	23
10	Alumina-platinum catalyst in the reductive dehydration of ethanol and diethyl ether to alkanes. Kinetics and Catalysis, 2010, 51, 548-558.	0.3	22
11	Cocatalytic effect of palladium and zinc in the condensation of alcohol carbon backbones into hydrocarbons. Kinetics and Catalysis, 2011, 52, 258-272.	0.3	22
12	Genesis and age of zircon from alkali and mafic rocks of the Elet'ozero Complex, North Karelia. Petrology, 2015, 23, 259-280.	0.2	21
13	Membrane technology in bioconversion of lignocellulose to motor fuel components. Petroleum Chemistry, 2017, 57, 747-762.	0.4	21
14	Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils. Energy, 2019, 172, 18-25.	4.5	21
15	Reductive Dehydration of Ethanol: A New Route Towards Alkanes. Catalysis Letters, 2008, 121, 199-208.	1.4	20
16	Aromatization of propane: Techno-economic analysis by multiscale "kinetics-to-process―simulation. Computers and Chemical Engineering, 2014, 71, 457-466.	2.0	20
17	Catalytic conversion of rape oil into alkane-aromatic fraction in the presence of Pd-Zn/MFI. Petroleum Chemistry, 2013, 53, 46-53.	0.4	19
18	Age of the Moncha Tundra fault, Kola Peninsula: Evidence from the Sm-Nd and Rb-Sr isotopic systematics of metamorphic assemblages. Geochemistry International, 2006, 44, 317-326.	0.2	17

#	Article	IF	CITATIONS
19	Linear α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst. Energy, 2019, 166, 569-576.	4.5	15
20	Microwave-Assisted Lignin Conversion to Liquid Products in the Presence of Iron and Nickel. Petroleum Chemistry, 2020, 60, 1019-1025.	0.4	15
21	Petrology of the Early Proterozoic Burakovsky layered intrusion, southern Karelia, Russia: mineral and whole-rock major-element chemistry. Canadian Journal of Earth Sciences, 1997, 34, 390-406.	0.6	14
22	Methods for Preparing Carbon Sorbents from Lignin (Review). Russian Journal of Applied Chemistry, 2018, 91, 1090-1105.	0.1	14
23	Petrology of the Early Paleoproterozoic Burakovsky complex, southern Karelia. Petrology, 2008, 16, 63-86.	0.2	11
24	Conversion of ethanol into hydrocarbon components of fuels in the presence of Pd-Zn-containing catalysts. Russian Chemical Bulletin, 2014, 63, 88-93.	0.4	11
25	Selective deoxygenation of vegetable oils in the presence of Pt–Sn/Al2O3 catalyst. Russian Chemical Bulletin, 2015, 64, 2062-2068.	0.4	10
26	Vibrational spectroscopy studies of structural changes in lignin under microwave irradiation. Russian Journal of Physical Chemistry A, 2017, 91, 1717-1729.	0.1	10
27	Conversion of biomass products to energy sources in the presence of nanocatalysts and membrane-catalyst systems. Catalysis in Industry, 2011, 3, 4-10.	0.3	9
28	High-speed degradation of sorbed petroleum residues and pollutants. Solid Fuel Chemistry, 2012, 46, 121-127.	0.2	9
29	Conversion of ethanol into linear primary alcohols on gold, nickel, and gold–nickel catalysts. Kinetics and Catalysis, 2016, 57, 803-811.	0.3	9
30	Evolution of active ingredients and catalytic properties of Pt-Sn/Al2O3 catalysts in the selective deoxygenation reaction of vegetable oils. Petroleum Chemistry, 2016, 56, 607-615.	0.4	9
31	Catalytic conversion of cellulose into hydrocarbon fuel components. Petroleum Chemistry, 2013, 53, 367-373.	0.4	8
32	Production of Motor Fuel from Lignocellulose in a Three-Stage Process (Review and Experimental) Tj ETQq0 0 0	rgBT /Ove 0.4	rlock 10 Tf 50
33	Variolitic lavas in the axial rift of the Mid-Atlantic Ridge and their origin (Sierra Leone area, 6°18′N). Petrology, 2010, 18, 263-277.	0.2	7
34	Coronitic textures in the ferrogabbroids of the Elet'ozero intrusive complex (northern Karelia,) Tj ETQq0 0 C 2017, 55, 535-547.) rgBT /Ove 0.2	rlock 10 Tf 50 7
35	Kraft Lignin Conversion into Energy Carriers under the Action of Electromagnetic Radiation. Journal of Chemistry, 2019, 2019, 1-9.	0.9	7
	Direct highly selective conversion of fatty acid triglycerides to fuel components. Doblady Chemistry		

³⁶ Direct highly selective conversion of fatty acid triglycerides to fuel components. Doklady Chemistry, 0.2 6 2012, 447, 306-308.

#	Article	IF	CITATIONS
37	Degradation of organophosphorus compounds adsorbed in carbon sorbent pores. Solid Fuel Chemistry, 2012, 46, 37-44.	0.2	6
38	Synergistic effect of gold and copper in the catalytic conversion of ethanol to linear α-alcohols. Petroleum Chemistry, 2016, 56, 730-737.	0.4	6
39	Coronitic textures in the ferrogabbros of the Elet'ozero intrusive complex (Northern Karelia, Russia) as evidence for the existence of Fe-rich melt. 2. Origin of Fe-rich liquid. Geochemistry International, 2017, 55, 621-628.	0.2	6
40	Lignin conversion to hydrogen-containing gas under the action of microwave radiation. Doklady Chemistry, 2017, 475, 184-187.	0.2	6
41	Pt–Sn/Al 2 O 3 catalyst for the selective hydrodeoxygenation of esters. Mendeleev Communications, 2018, 28, 91-92.	0.6	6
42	Single-Stage Catalytic Coconversion of Vegetable Oils and Alcohols to the Alkane–Aromatic Hydrocarbon Fraction without Using Molecular Hydrogen. Petroleum Chemistry, 2018, 58, 258-263.	0.4	6
43	Pillow lavas of the Sierra Leone test site, Mid-Atlantic Ridge, 5°–7°N: Sr-Nd isotope systematics, geochemistry, and petrology. Petrology, 2008, 16, 335-352.	0.2	5
44	Highly selective conversion of vegetable oil into hydrocarbons. Doklady Chemistry, 2015, 460, 26-28.	0.2	5
45	Conversion of ethanol and glycerol to olefins over the Re- and W-containing catalysts. Russian Chemical Bulletin, 2015, 64, 337-345.	0.4	5
46	Origin of Fe–Ti Oxide Mineralization in the Middle Paleoproterozoic Elet'ozero Syenite–Gabbro Intrusive Complex (Northern Karelia, Russia). Geology of Ore Deposits, 2018, 60, 172-200.	0.2	5
47	Effect of the Method of Synthesizing a Nickel-Containing Catalyst on Lignin Conversion in Liquid-Phase Hydrodepolymerization. Petroleum Chemistry, 2019, 59, 111-119.	0.4	5
48	Rapid Conversion of Methane to Hydrogen Stimulated by Microwave Irradiation on the Surface of a Carbon Adsorbent. Doklady Physical Chemistry, 2021, 498, 49-53.	0.2	5
49	Microwave-Stimulated Conversion of a Tar/Lignin Blend into Hydrocarbons in a Plasma-Catalytic Mode. Russian Journal of Applied Chemistry, 2021, 94, 1513-1524.	0.1	5
50	Intracranial recording from the brain-stem and the trigeminal nerve following upper lip stimulation. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1996, 100, 51-54.	2.0	4
51	Mechanism of the reductive dehydration of ethanol into C3+ alkanes over the commercial alumina—platinum catalyst AP-64. Kinetics and Catalysis, 2016, 57, 95-103.	0.3	4
52	Conversion of Ethanol into a Fraction of C3+ Hydrocarbons in the Presence of Gold-Containing Catalysts Based on a Zeolite MFI Support. Kinetics and Catalysis, 2017, 58, 741-748.	0.3	4
53	The Evolution of Large Igneous Provinces in the Earth's History: The Eastern Baltic Shield. Journal of Volcanology and Seismology, 2020, 14, 327-340.	0.2	4
54	Microwave-Assisted Plasma Catalytic Conversion of Tar to Hydrocarbon Products. Petroleum Chemistry, 2021, 61, 721-728.	0.4	4

#	Article	IF	CITATIONS
55	Sr-Nd isotopic heterogeneity of basalts of the sierra leone test site, Mid-Atlantic ridge, 5°–7° S. Doklady Earth Sciences, 2006, 410, 1127-1131.	0.2	3
56	Within-plate (intracontinental) and postorogenic magmatism of the East European Craton as reflection of the evolution of continental lithosphere. Petrology, 2009, 17, 207-226.	0.2	3
57	Determination of the local structure of a highly dispersed Pd-Nanosystem located on a titanium dioxide carrier. Journal of Surface Investigation, 2010, 4, 636-639.	0.1	3
58	Reductive dehydration of ethanol to hydrocarbons on Ni- and Au-containing nanocomposites. Nanotechnologies in Russia, 2012, 7, 327-338.	0.7	3
59	Petrology of the Mid-Paleoproterozoic Tiksheozero Ultramafic‒Alkaline‒Carbonatite Complex (Northern Karelia). Petrology, 2021, 29, 475-501.	0.2	3
60	m-Cresol Chemisorption on a Porous Iron-Containing Sorbent Prepared from the Carbon Residue after Lignin Processing: I. Pore Structure and Adsorption Ability of the Sorbent. Petroleum Chemistry, 2021, 61, 81-87.	0.4	3
61	Effect of Promoter M (M = Au, Ag, Cu, Ce, Fe, Ni, Co, Zn) on the Activity of Pd–M/Al2O3 Catalysts of Ethanol Conversion into α-Alcohols. Kinetics and Catalysis, 2020, 61, 894-902.	0.3	3
62	Conversion of biological substrates to fuel components in the presence of industrial catalysts. Russian Chemical Bulletin, 2013, 62, 820-829.	0.4	2
63	U-Pb isotopic study of the gabbronorite–anorthosite drusite (coronite) body of Vorony Island (Kandalaksha Archipelago, the White Sea). Petrology, 2016, 24, 75-83.	0.2	2
64	Direct conversion of ethanol and fusel oils to alkane–aromatic hydrocarbons in the presence of a pilot Pd–Zn/TsVM catalyst. Petroleum Chemistry, 2018, 58, 32-42.	0.4	2
65	Alkylation of isopropanol with ethanol in the presence of an Au-Ni/Al2O3 catalyst. Doklady Chemistry, 2015, 462, 130-132.	0.2	1
66	Conversion of bio-oxygenates into hydrocarbons in the presence of a commercial Pt–Re/Al2O3 catalyst. Kinetics and Catalysis, 2016, 57, 812-820.	0.3	1
67	Kinetic description of rapeseed oil conversion into aromatic hydrocarbons on promoted MFI zeolite. Petroleum Chemistry, 2016, 56, 591-598.	0.4	1
68	Ultramafic–Alkaline–Carbonatite Complexes as a Result of Two-Stage Melting of a Mantle Plume: Evidence from the Mid-Paleoproterozoic Tiksheozero Intrusion, Northern Karelia, Russia. Doklady Earth Sciences, 2019, 486, 638-643.	0.2	1
69	Microwave-Assisted Lignin Conversion for Energy Carriers. Russian Journal of Physical Chemistry B, 2019, 13, 421-426.	0.2	1
70	Regeneration of a Porous Iron-Containing Carbon Adsorbent under Plasma-Catalytic Conditions Assisted by Microwave Irradiation. Petroleum Chemistry, 2021, 61, 498-503.	0.4	1
71	Deactivation Mechanism of Palladium Catalysts for Ethanol Conversion to Butanol. Petroleum Chemistry, 2021, 61, 504-515.	0.4	1
72	10.1007/s11495-008-1004-2. , 2010, 16, 63.		1

#	Article	IF	CITATIONS
73	Unusual PGE distribution in the mafic-ultramafic rocks of the Early Paleoproterozoic (2.5–2.35 Ga) drusite (coronite) complex of the Belomorian region, northern Karelia, Russia. Geochemistry International, 2007, 45, 247-260.	0.2	0
74	XAFS structural study of specific features of the active component of model palladium catalysts. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 1190-1194.	0.1	0
75	Coronitic textures in ferrogabbroids of the Elet'ozero complex (North Karelia, Russia): Evidence for the existence of an immiscible high-Fe melt. Doklady Earth Sciences, 2016, 468, 518-522.	0.2	0
76	Microwave-Assisted Catalytic Conversion of Lignin to Liquid Products. Petroleum Chemistry, 2019, 59, S108-S115.	0.4	0
77	Heterogeneous Catalytic Synthesis of Zingerone and Dehydrozingerone. Petroleum Chemistry, 2020, 60, 1080-1086.	0.4	0
78	Selective Hydration of Furfurol in the Presence of Platinum-Containing Catalysts. Russian Journal of Physical Chemistry B, 2021, 15, 399-406.	0.2	0
79	Effects of Support on the Formation and Activity of Gold Catalysts for Ethanol Conversion to Butanol. Petroleum Chemistry, 2021, 61, 748-761.	0.4	0
80	OBTAINING ACTIVE COMPONENTS (Tа, Rа) of BIMETALLIC CATALYSTS ON Î ³ -Al2O3 AND TiO2 MATRICES. Fine Chemical Technologies, 2016, 11, 42-51.	0.1	0
81	A periodic DFT study of CO adsorption over Pd–Cu alloy (111) surfaces. Research on Chemical Intermediates, 2022, 48, 853.	1.3	0