
Yigal R Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4522825/publications.pdf Version: 2024-02-01

YICAL P COHEN

#	Article	IF	CITATIONS
1	β-Aminobutyric Acid-Induced Resistance Against Plant Pathogens. Plant Disease, 2002, 86, 448-457.	1.4	250
2	Plant eR Genes That Encode Photorespiratory Enzymes Confer Resistance against Disease. Plant Cell, 2004, 16, 172-184.	6.6	179
3	Cucurbit downy mildew (Pseudoperonospora cubensis)—biology, ecology, epidemiology, host-pathogen interaction and control. European Journal of Plant Pathology, 2011, 129, 157-192.	1.7	154
4	Local and Systemic Induced Resistance to the Root-Knot Nematode in Tomato by DL-β-Amino-n-Butyric Acid. Phytopathology, 1999, 89, 1138-1143.	2.2	114
5	BABA-induced resistance: milestones along a 55-year journey. Phytoparasitica, 2016, 44, 513-538.	1.2	111
6	Title is missing!. European Journal of Plant Pathology, 1999, 105, 351-361.	1.7	92
7	Dimethomorph Activity Against Oomycete Fungal Plant Pathogens. Phytopathology, 1995, 85, 1500.	2.2	90
8	Resurgence of <i>Pseudoperonospora cubensis</i> : The Causal Agent of Cucurbit Downy Mildew. Phytopathology, 2015, 105, 998-1012.	2.2	80
9	Local and Systemic Control ofPhytophthora infestansin Tomato Plants by dl-3-Amino-n-Butanoic Acids. Phytopathology, 1994, 84, 55.	2.2	77
10	Factors affecting infection of sunflowers by <i>Plasmopara halstedii</i> . Canadian Journal of Botany, 1973, 51, 15-22.	1.1	73
11	The combined effects of temperature, leaf wetness, and inoculum concentration on infection of cucumbers with <i>Pseudoperonospora cubensis</i> . Canadian Journal of Botany, 1977, 55, 1478-1487.	1.1	71
12	Ultrastructure, autofluorescence, callose deposition and lignification in susceptible and resistant muskmelon leaves infected with the powdery mildew fungus Sphaerotheca fuliginea. Physiological and Molecular Plant Pathology, 1990, 36, 191-204.	2.5	71
13	Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with β-aminobutyric acid (BABA). Phytoparasitica, 2001, 29, 125-133.	1.2	62
14	Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). European Journal of Plant Pathology, 2010, 126, 553-573.	1.7	62
15	The Novel Oomycide Oxathiapiprolin Inhibits All Stages in the Asexual Life Cycle of Pseudoperonospora cubensis - Causal Agent of Cucurbit Downy Mildew. PLoS ONE, 2015, 10, e0140015.	2.5	61
16	Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen <i>Pseudoperonospora cubensis</i> . Pest Management Science, 2011, 67, 1211-1214.	3.4	59
17	Title is missing!. European Journal of Plant Pathology, 2001, 107, 219-227.	1.7	54
18	Synergistic interaction between BABA and mancozeb in controllingPhytophthora infestans in potato and Pseudoperonospora cubensis in cucumber. Phytoparasitica, 2003, 31, 399-409.	1.2	52

YIGAL R COHEN

#	Article	IF	CITATIONS
19	Light Suppresses Sporulation and Epidemics of Peronospora belbahrii. PLoS ONE, 2013, 8, e81282.	2.5	48
20	Epidemiology of Basil Downy Mildew. Phytopathology, 2017, 107, 1149-1160.	2.2	45
21	Seed infection and latent infection of sunflowers by Plasmopara halstedii. Canadian Journal of Botany, 1974, 52, 231-238.	1.1	41
22	Comparative Efficacy of Systemic Acquired Resistance-Inducing Compounds Against Rust Infection in Sunflower Plants. Phytopathology, 2007, 97, 179-186.	2.2	40
23	Mating type and sexual reproduction of Pseudoperonospora cubensis, the downy mildew agent of cucurbits. European Journal of Plant Pathology, 2012, 132, 577-592.	1.7	40
24	Post infection application of DL-3-amino-butyric acid (BABA) induces multiple forms of resistance against Bremia lactucae in lettuce. European Journal of Plant Pathology, 2011, 130, 13-27.	1.7	39
25	Differential Activity of Carboxylic Acid Amide Fungicides Against Various Developmental Stages of Phytophthora infestans. Phytopathology, 2007, 97, 1274-1283.	2.2	38
26	Populations of Phytophthora infestans in Israel Underwent Three Major Genetic Changes During 1983 to 2000. Phytopathology, 2002, 92, 300-307.	2.2	37
27	The BABA story of induced resistance. Phytoparasitica, 2001, 29, 375-378.	1.2	35
28	Occurrence and etiology of Alternaria leaf blotch and fruit spot of apple caused by Alternaria alternata f. sp. mali on cv. Pink lady in Israel. European Journal of Plant Pathology, 2017, 147, 695-708.	1.7	34
29	Seed Transmission of Pseudoperonospora cubensis. PLoS ONE, 2014, 9, e109766.	2.5	31
30	Inheritance of resistance against Phytophthora infestans in Lycopersicon pimpenellifolium L3707. Euphytica, 2006, 149, 309-316.	1.2	30
31	Dry mycelium ofPenicillium chrysogenum induces resistance against verticillium wilt and enhances growth of cotton plants. Phytoparasitica, 2002, 30, 147-157.	1.2	28
32	Activity of carboxylic acid amide (CAA) fungicides against Bremia lactucae. European Journal of Plant Pathology, 2008, 122, 169-183.	1.7	27
33	Resistance Against Basil Downy Mildew in <i>Ocimum</i> Species. Phytopathology, 2015, 105, 778-785.	2.2	26
34	Transfer of Downy Mildew Resistance from Wild Basil (<i>Ocimum americanum</i>) to Sweet Basil (<i>O. basilicum</i>). Phytopathology, 2018, 108, 114-123.	2.2	26
35	Mutagenesis of <i>Phytophthora infestans</i> for Resistance Against Carboxylic Acid Amide and Phenylamide Fungicides. Plant Disease, 2008, 92, 675-683.	1.4	25
36	Occurrence and Distribution of Mating Types of <i>Pseudoperonospora cubensis</i> in the United States. Phytopathology, 2017, 107, 313-321.	2.2	25

YIGAL R COHEN

#	Article	IF	CITATIONS
37	Dry mycelium ofPenicillium chrysogenum protects cucumber and tomato plants against the root-knot nematodeMeloidogyne javanica. Phytoparasitica, 2003, 31, 217-225.	1.2	24
38	Nocturnal Fanning Suppresses Downy Mildew Epidemics in Sweet Basil. PLoS ONE, 2016, 11, e0155330.	2.5	24
39	An Improved Method for Infecting Tomato Leaves or Seedlings with Oospores of Phytophthora infestans Used to Investigate F1 Progeny. Plant Disease, 2006, 90, 741-749.	1.4	23
40	Characterization of Pseudoperonospora cubensis isolates from Europe and Asia using ISSR and SRAP molecular markers. European Journal of Plant Pathology, 2014, 139, 641-653.	1.7	23
41	Oxathiapiprolin-based fungicides provide enhanced control of tomato late blight induced by mefenoxam-insensitive Phytophthora infestans. PLoS ONE, 2018, 13, e0204523.	2.5	22
42	Cisgenic melons over expressing glyoxylate-aminotransferase are resistant to downy mildew. European Journal of Plant Pathology, 2009, 125, 355-365.	1.7	19
43	Pathogenic Fitness of Oosporic Progeny Isolates of <i>Phytophthora infestans</i> on Late-Blight-Resistant Tomato Lines. Plant Disease, 2009, 93, 947-953.	1.4	19
44	Daytime Solar Heating Controls Downy Mildew Peronospora belbahrii in Sweet Basil. PLoS ONE, 2015, 10, e0126103.	2.5	19
45	Root treatment with oxathiapiprolin, benthiavalicarb or their mixture provides prolonged systemic protection against oomycete foliar pathogens. PLoS ONE, 2020, 15, e0227556.	2.5	16
46	Disappearance of IAA in the presence of tissues of sunflowers infected by <i>Plasmopara halstedii</i> . Canadian Journal of Botany, 1974, 52, 861-866.	1.1	15
47	ATTEMPTS TO OVERCOME THE BARRIER OF INTERSPECIFIC HYBRIDIZATION BETWEEN CUCUMIS MELO AND C. METULIFERUS. Israel Journal of Plant Sciences, 1995, 43, 113-123.	0.5	13
48	Inheritance of Resistance to Powdery Mildew Race 1W in Watermelon. Phytopathology, 2015, 105, 1446-1457.	2.2	12
49	Novel synergistic fungicidal mixtures of oxathiapiprolin protect sunflower seeds from downy mildew caused by Plasmopara halstedii. PLoS ONE, 2019, 14, e0222827.	2.5	12
50	Population structure of <i>Erysiphe necator</i> on domesticated and wild vines in the Middle East raises questions on the origin of the grapevine powdery mildew pathogen. Environmental Microbiology, 2021, 23, 6019-6037.	3.8	11
51	Oospores associated with tomato seed may lead to seedborne transmission ofPhytophthora infestans. Phytoparasitica, 2004, 32, 237-245.	1.2	10
52	Control of cucumber downy mildew with novel fungicidal mixtures of Oxathiapiprolin. Phytoparasitica, 2018, 46, 689-704.	1.2	10
53	Control of Alternaria fruit rot in 'Pink Lady' apples by fungicidal mixtures. Crop Protection, 2020, 127, 104947.	2.1	9
54	A new strategy for durable control of late blight in potato by a single soil application of an oxathiapiprolin mixture in early season. PLoS ONE, 2020, 15, e0238148.	2.5	9

YIGAL R COHEN

#	Article	IF	CITATIONS
55	Phenology-Based Management of Alternaria Fruit Rot in Pink Lady Apples. Plant Disease, 2018, 102, 1072-1080.	1.4	8
56	β-Aminobutyric Acid Induced Resistance against Alternaria Fruit Rot in Apple Fruits. Journal of Fungi (Basel, Switzerland), 2021, 7, 564.	3.5	7
57	Effective control of two genotypes of Phytophthora infestans in the field by three oxathiapiprolin fungicidal mixtures. PLoS ONE, 2021, 16, e0258280.	2.5	7
58	Host range of Peronospora belbahrii, causal agent of basil downy mildew, in Israel. European Journal of Plant Pathology, 2019, 155, 789-799.	1.7	6
59	Isolate-Dependent Inheritance of Resistance Against Pseudoperonospora cubensis in Cucumber. Agronomy, 2020, 10, 1086.	3.0	6
60	Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites. Plants, 2022, 11, 978.	3.5	6
61	Investigation of Seed transmission in Peronospora belbahrii the Causal Agent of Basil Downy Mildew. Agronomy, 2019, 9, 205.	3.0	5
62	Essential Tea Tree Oil Activity against Bremia lactucae in Lettuce. Agronomy, 2020, 10, 836.	3.0	5
63	Downy mildew of lavender caused by Peronospora belbahrii in Israel. Mycological Progress, 2020, 19, 1537-1543.	1.4	4
64	EMS and UV irradiation induce unstable resistance against CAA fungicides in Bremia lactucae. European Journal of Plant Pathology, 2011, 129, 339-351.	1.7	3
65	Differential sensitivity to dryness of conidia of <i>Exserohilum turcicum</i> on corn leaves and artificial media. Canadian Journal of Plant Pathology, 1983, 5, 235-238.	1.4	2
66	Survival in the field of Pseudoperonospora cubensis and Plasmopara viticola after extreme hot and dry weather conditions in Israel. Phytoparasitica, 2020, 48, 699-703.	1.2	0
67	Title is missing!. , 2020, 15, e0227556.		0
68	Title is missing!. , 2020, 15, e0227556.		0
69	Title is missing!. , 2020, 15, e0227556.		0
70	Title is missing!. , 2020, 15, e0227556.		0
71	Title is missing!. , 2020, 15, e0238148.		0

#	Article	IF	CITATIONS
73	Title is missing!. , 2020, 15, e0238148.		0
74	Title is missing!. , 2020, 15, e0238148.		0