
Bruce A Shapiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4522771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural insights of the conserved "priming loop―of hepatitis B virus pre-genomic RNA. Journal of Biomolecular Structure and Dynamics, 2022, 40, 9761-9773.	3.5	14
2	Structural characterization of a new subclass of panicum mosaic virus-like 3′ cap-independent translation enhancer. Nucleic Acids Research, 2022, , .	14.5	2
3	Dynamic bulge nucleotides in the KSHV PAN ENE triple helix provide a unique binding platform for small molecule ligands. Nucleic Acids Research, 2021, 49, 13179-13193.	14.5	6
4	Predicting RNA SHAPE scores with deep learning. RNA Biology, 2020, 17, 1324-1330.	3.1	2
5	Characterization of Cationic Bolaamphiphile Vesicles for siRNA Delivery into Tumors and Brain. Molecular Therapy - Nucleic Acids, 2020, 20, 359-372.	5.1	24
6	Truncated tetrahedral RNA nanostructures exhibit enhanced features for delivery of RNAi substrates. Nanoscale, 2020, 12, 2555-2568.	5.6	14
7	Photoactivation of sulfonated polyplexes enables localized gene silencing by DsiRNA in breast cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 26, 102176.	3.3	3
8	RNA2Drawer: geometrically strict drawing of nucleic acid structures with graphical structure editing and highlighting of complementary subsequences. RNA Biology, 2019, 16, 1667-1671.	3.1	51
9	A Suite of Therapeutically-Inspired Nucleic Acid Logic Systems for Conditional Generation of Single-Stranded and Double-Stranded Oligonucleotides. Nanomaterials, 2019, 9, 615.	4.1	7
10	Structural Differences between Pri-miRNA Paralogs Promote Alternative Drosha Cleavage and Expand Target Repertoires. Cell Reports, 2019, 26, 447-459.e4.	6.4	42
11	Dynamic Behavior of RNA Nanoparticles Analyzed by AFM on a Mica/Air Interface. Langmuir, 2018, 34, 15099-15108.	3.5	35
12	RNA–Protein Interactions Prevent Long RNA Duplex Formation: Implications for the Design of RNA-Based Therapeutics. Molecules, 2018, 23, 3329.	3.8	0
13	RiboSketch: versatile visualization of multi-stranded RNA and DNA secondary structure. Bioinformatics, 2018, 34, 4297-4299.	4.1	15
14	Design and biological activity of novel stealth polymeric lipid nanoparticles for enhanced delivery of hydrophobic photodynamic therapy drugs. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2295-2305.	3.3	15
15	Combined single molecule experimental and computational approaches for understanding the unfolding pathway of a viral translation enhancer that participates in a conformational switch. RNA Biology, 2017, 14, 1466-1472.	3.1	1
16	Functionalized non-viral cationic vectors for effective siRNA induced cancer therapy. DNA and RNA Nanotechnology, 2017, 4, 1-20.	0.7	3
17	Functionally-interdependent shape-switching nanoparticles with controllable properties. Nucleic Acids Research, 2017, 45, gkx008.	14.5	71
18	Computational Generation of RNA Nanorings. Methods in Molecular Biology, 2017, 1632, 19-32.	0.9	4

BRUCE A SHAPIRO

#	Article	IF	CITATIONS
19	Preparation of a Conditional RNA Switch. Methods in Molecular Biology, 2017, 1632, 303-324.	0.9	11
20	Protocols for Molecular Dynamics Simulations of RNA Nanostructures. Methods in Molecular Biology, 2017, 1632, 33-64.	0.9	3
21	Cotranscriptional Production of Chemically Modified RNA Nanoparticles. Methods in Molecular Biology, 2017, 1632, 91-105.	0.9	4
22	Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch. ELife, 2017, 6, .	6.0	15
23	Oxime Ether Lipids as Transfection Agents: Assembly and Complexation with siRNA. Methods in Molecular Biology, 2017, 1632, 241-253.	0.9	1
24	Triggerable RNA nanodevices. RNA & Disease (Houston, Tex), 2017, 4, .	1.0	1
25	RNA Toehold Interactions Initiate Conditional Gene Silencing. DNA and RNA Nanotechnology, 2016, 3, 11-13.	0.7	2
26	Multistrand Structure Prediction of Nucleic Acid Assemblies and Design of RNA Switches. Nano Letters, 2016, 16, 1726-1735.	9.1	53
27	Ring Catalog: A resource for designing self-assembling RNA nanostructures. Methods, 2016, 103, 128-137.	3.8	33
28	Cellular Delivery of RNA Nanoparticles. ACS Combinatorial Science, 2016, 18, 527-547.	3.8	47
29	Advances in RNA structure determination. Methods, 2016, 103, 1-3.	3.8	7
30	The Use of Minimal RNA Toeholds to Trigger the Activation of Multiple Functionalities. Nano Letters, 2016, 16, 1746-1753.	9.1	40
31	Triggering RNAi with multifunctional RNA nanoparticles and their delivery. DNA and RNA Nanotechnology, 2015, 2, 1-12.	0.7	17
32	Bolaamphiphiles as carriers for siRNA delivery: From chemical syntheses to practical applications. Journal of Controlled Release, 2015, 213, 142-151.	9.9	39
33	Computational and Experimental Studies of Reassociating RNA/DNA Hybrids Containing Split Functionalities. Methods in Enzymology, 2015, 553, 313-334.	1.0	12
34	Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts. Nanomedicine, 2015, 10, 2805-2818.	3.3	18
35	Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles. ACS Nano, 2015, 9, 251-259.	14.6	100
36	RNA and DNA nanoparticles for triggering RNA interference. RNA & Disease (Houston, Tex), 2015, 2, .	1.0	0

BRUCE A SHAPIRO

#	Article	IF	CITATIONS
37	The 3′ Untranslated Region of Pea Enation Mosaic Virus Contains Two T-Shaped, Ribosome-Binding, Cap-Independent Translation Enhancers. Journal of Virology, 2014, 88, 11696-11712.	3.4	43
38	Multifunctional RNA Nanoparticles. Nano Letters, 2014, 14, 5662-5671.	9.1	181
39	Computational and experimental characterization of RNA cubic nanoscaffolds. Methods, 2014, 67, 256-265.	3.8	55
40	Activation of different split functionalities on re-association of RNA–DNA hybrids. Nature Nanotechnology, 2013, 8, 296-304.	31.5	106
41	The role of salt concentration and magnesium binding in HIV-1 subtype-A and subtype-B kissing loop monomer structures. Journal of Biomolecular Structure and Dynamics, 2013, 31, 495-510.	3.5	14
42	Co-transcriptional Assembly of Chemically Modified RNA Nanoparticles Functionalized with siRNAs. Nano Letters, 2012, 12, 5192-5195.	9.1	117
43	Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nature Protocols, 2011, 6, 2022-2034.	12.0	177
44	Self-Assembling RNA Nanorings Based on RNAI/II Inverse Kissing Complexes. Nano Letters, 2011, 11, 878-887.	9.1	219
45	Understanding the effects of carbocyclic sugars constrained to north and south conformations on RNA nanodesign. Journal of Molecular Graphics and Modelling, 2011, 29, 624-634.	2.4	1
46	In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature Nanotechnology, 2010, 5, 676-682.	31.5	330
47	Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. Journal of Molecular Graphics and Modelling, 2008, 27, 299-308.	2.4	82
48	RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Research, 2008, 36, D392-D397.	14.5	141
49	Computational Design of an RNA Hexagonal Nanoring and an RNA Nanotube. Nano Letters, 2007, 7, 2328-2334.	9.1	121
50	Exploring RNA Intermediate Conformations with the Massively Parallel Genetic Algorithm. , 2003, , 1-33.		2
51	Molecular Dynamics Simulations of the Denaturation and Refolding of an RNA Tetraloop. Journal of Biomolecular Structure and Dynamics, 2001, 19, 381-396.	3.5	19
52	An Index Structure for Data Mining and Clustering. Knowledge and Information Systems, 2000, 2, 161-184.	3.2	46
53	A Boltzmann Filter Improves the Prediction of RNA Folding Pathways in a Massively Parallel Genetic Algorithm. Journal of Biomolecular Structure and Dynamics, 1999, 17, 581-595.	3.5	14
54	Complementary classification approaches for protein sequences. Protein Engineering, Design and Selection, 1996, 9, 381-386.	2.1	24