Mohamed Asbahi

List of Publications by Citations

Source: https://exaly.com/author-pdf/4522546/mohamed-asbahi-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25 324 11 17 g-index

25 a 387 6.1 2.93 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
25	Second-Harmonic Generation from Sub-5 nm Gaps by Directed Self-Assembly of Nanoparticles onto Template-Stripped Gold Substrates. <i>Nano Letters</i> , 2015 , 15, 5976-81	11.5	61
24	Large Area Directed Self-Assembly of Sub-10 nm Particles with Single Particle Positioning Resolution. <i>Nano Letters</i> , 2015 , 15, 6066-70	11.5	31
23	Directed self-assembly of densely packed gold nanoparticles. <i>Langmuir</i> , 2012 , 28, 16782-7	4	28
22	Template-induced structure transition in sub-10 nm self-assembling nanoparticles. <i>Nano Letters</i> , 2014 , 14, 2642-6	11.5	24
21	Direct Patterning of Zinc Sulfide on a Sub-10 Nanometer Scale via Electron Beam Lithography. <i>ACS Nano</i> , 2017 , 11, 9920-9929	16.7	20
20	Room temperature Coulomb blockade effects in Au nanocluster/pentacene single electron transistors. <i>Nanotechnology</i> , 2015 , 26, 355204	3.4	19
19	High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting. <i>Scientific Reports</i> , 2015 , 5, 9654	4.9	18
18	Nanostructure Formation by controlled dewetting on patterned substrates: A combined theoretical, modeling and experimental study. <i>Scientific Reports</i> , 2016 , 6, 32398	4.9	17
17	Directed Self-Assembly of sub-10 nm Particles: Role of Driving Forces and Template Geometry in Packing and Ordering. <i>Langmuir</i> , 2015 , 31, 8548-57	4	16
16	Thermoelectric Properties of Substoichiometric Electron Beam Patterned Bismuth Sulfide. <i>ACS Applied Materials & District Materials & D</i>	9.5	13
15	Multiphoton Upconversion Enhanced by Deep Subwavelength Near-Field Confinement. <i>Nano Letters</i> , 2021 , 21, 3044-3051	11.5	12
14	Directed self-assembly of sub-10 nm particle clusters using topographical templates. <i>Nanotechnology</i> , 2016 , 27, 424001	3.4	11
13	Room-Temperature Patterning of Nanoscale MoS under an Electron Beam. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 16772-16781	9.5	9
12	A method for metallic stamp replication using nanoimprinting and electroforming techniques. <i>Microelectronic Engineering</i> , 2012 , 91, 112-120	2.5	9
11	Recording performances in perpendicular magnetic patterned media. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 385003	3	8
10	A facile approach for screening isolated nanomagnetic behavior for bit-patterned media. <i>Nanotechnology</i> , 2014 , 25, 225203	3.4	6
9	Determination of Position Jitter and Dot-Size Fluctuations in Patterned Arrays Fabricated by the Directed Self-Assembly of Gold Nanoparticles. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 51-55	2	5

LIST OF PUBLICATIONS

s on 2	3
3·4	3
e in 7.7	2
3.4	2
rials 9.5	1
)	1
	2 l 3.4 e in 7.7 3.4 iials 9.5