Xiaodong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4522466/publications.pdf

Version: 2024-02-01

430874 434195 1,174 31 18 31 citations h-index g-index papers 31 31 31 1486 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Directing the H ₂ -driven selective regeneration of NADH <i>via</i> Sn-doped Pt/SiO ₂ . Green Chemistry, 2022, 24, 1451-1455.	9.0	9
2	Supported Pt Enabled Proton-Driven NAD(P) ⁺ Regeneration for Biocatalytic Oxidation. ACS Applied Materials & Discrete Support Suppor	8.0	4
3	NADH Regeneration: A Case Study of Pt-Catalyzed NAD ⁺ Reduction with H ₂ . ACS Catalysis, 2021, 11, 283-289.	11.2	34
4	Comparative life cycle assessment of NAD(P)H regeneration technologies. Green Chemistry, 2021, 23, 7162-7169.	9.0	8
5	Assessing the environmental performance of NADH regeneration methods: A cleaner process using recyclable Pt/Fe3O4 and hydrogen. Catalysis Today, 2020, 339, 281-288.	4.4	12
6	A facile analytical method for reliable selectivity examination in cofactor NADH regeneration. Chemical Communications, 2020, 56, 1231-1234.	4.1	44
7	Experimental Determination and Thermodynamic Correlation of 7-Amino-4-Methylcoumarin Solubility in Various Cosolvency Mixtures at (278.15–323.15) K. Journal of Chemical & Engineering Data, 2020, 65, 209-216.	1.9	10
8	Improving Photocatalytic Energy Conversion via NAD(P)H. Joule, 2020, 4, 2055-2059.	24.0	25
9	Cofactor NAD(P)H Regeneration: How Selective Are the Reactions?. Trends in Chemistry, 2020, 2, 488-492.	8 . 5	10
10	Solubility Behavior and Thermodynamic Modeling of Inosine (Form \hat{l}^2) in Four Cosolvency Systems at $\langle i \rangle T \langle i \rangle = 278.15$ to 323.15 K. Journal of Chemical & Engineering Data, 2020, 65, 2170-2177.	1.9	2
11	Unraveling and Manipulating of NADH Oxidation by Photogenerated Holes. ACS Catalysis, 2020, 10, 4967-4972.	11.2	48
12	Coordination between Electron Transfer and Molecule Diffusion through a Bioinspired Amorphous Titania Nanoshell for Photocatalytic Nicotinamide Cofactor Regeneration. ACS Catalysis, 2019, 9, 11492-11501.	11.2	49
13	Gas phase selective hydrogenation of phenylacetylene to styrene over Au/Al ₂ O ₃ . Journal of Chemical Technology and Biotechnology, 2019, 94, 3772-3779.	3.2	8
14	Electric-Field-Assisted Facile Synthesis of Metal Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 1271-1278.	6.7	13
15	Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways. CheM, 2017, 2, 621-654.	11.7	287
16	Constructing magnetic Si–C–Fe hybrid microspheres for room temperature nitroarenes reduction. Journal of Materials Chemistry A, 2017, 5, 10986-10997.	10.3	35
17	Constructing Quantum Dots@Flake Graphitic Carbon Nitride Isotype Heterojunctions for Enhanced Visible-Light-Driven NADH Regeneration and Enzymatic Hydrogenation. Industrial & Engineering Chemistry Research, 2017, 56, 6247-6255.	3.7	45
18	Effect of support redox character on catalytic performance in the gas phase hydrogenation of benzaldehyde and nitrobenzene over supported gold. Catalysis Today, 2017, 279, 19-28.	4.4	24

#	Article	IF	CITATION
19	Selective gas phase hydrogenation of nitroarenes over Mo ₂ C-supported Au–Pd. Catalysis Science and Technology, 2016, 6, 6932-6941.	4.1	16
20	Heterogeneous Catalysis Mediated Cofactor NADH Regeneration for Enzymatic Reduction. ACS Catalysis, 2016, 6, 1880-1886.	11.2	99
21	Selective gas phase hydrogenation of p-nitrobenzonitrile to p-aminobenzonitrile over zirconia supported gold. Applied Catalysis A: General, 2016, 510, 171-179.	4.3	12
22	Influence of Alternation of Sulfate Attack and Freeze-Thaw on Microstructure of Concrete. Advances in Materials Science and Engineering, 2015, 2015, 1-7.	1.8	8
23	Toward Sustainable Chemoselective Nitroarene Hydrogenation Using Supported Gold as Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 2781-2789.	6.7	23
24	Gas phase hydrogenation of nitrocyclohexane over supported gold catalysts. Applied Catalysis A: General, 2013, 467, 575-584.	4.3	32
25	Pt/Sn Intermetallic, Core/Shell and Alloy Nanoparticles: Colloidal Synthesis and Structural Control. Chemistry of Materials, 2013, 25, 1400-1407.	6.7	88
26	Impact of Organic Ligands on the Structure and Hydrogenation Performance of Colloidally Prepared Bimetallic PtSn Nanoparticles. ChemCatChem, 2013, 5, 1803-1810.	3.7	12
27	Reducible Support Effects in the Gas Phase Hydrogenation of $\langle i \rangle p \langle i \rangle$ -Chloronitrobenzene over Gold. Journal of Physical Chemistry C, 2013, 117, 994-1005.	3.1	40
28	The role of hydrogen partial pressure in the gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au and Pd: A consideration of reaction thermodynamics and kinetics. Chemical Engineering Journal, 2012, 210, 103-113.	12.7	35
29	Enhanced selective nitroarene hydrogenation over Au supported on \hat{l}^2 -Mo2C and \hat{l}^2 -Mo2C/Al2O3. Journal of Catalysis, 2012, 286, 172-183.	6.2	60
30	Colloidal Synthesis and Structural Control of PtSn Bimetallic Nanoparticles. Langmuir, 2011, 27, 11052-11061.	3.5	55
31	Selective hydrogenation of bromonitrobenzenes over Pt/l³-Fe2O3. Journal of Molecular Catalysis A,	4.8	27