List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4522462/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Synthesis and Reactivity of C-Heteroatom-Substituted Aziridines. Chemical Reviews, 2007, 107, 2080-2135.                                                                                                                      | 23.0 | 406       |
| 2  | Regioselectivity in the ring opening of non-activated aziridines. Chemical Society Reviews, 2012, 41, 643-665.                                                                                                                | 18.7 | 401       |
| 3  | Quinoline-based antimalarial hybrid compounds. Bioorganic and Medicinal Chemistry, 2015, 23, 5098-5119.                                                                                                                       | 1.4  | 177       |
| 4  | Synthetic approaches towards 2-iminothiazolidines: an overview. Tetrahedron, 2006, 62, 513-535.                                                                                                                               | 1.0  | 112       |
| 5  | A Novel Entry toward 2-Imino-1,3-thiazolidines and 2-Imino-1,3-thiazolines by Ring Transformation of 2-(Thiocyanomethyl)aziridines. Journal of Organic Chemistry, 2005, 70, 227-232.                                          | 1.7  | 108       |
| 6  | Epihalohydrins in Organic Synthesis. Chemical Reviews, 2013, 113, 1441-1498.                                                                                                                                                  | 23.0 | 73        |
| 7  | Antibacterial and Î²â€Łactamase Inhibitory Activity of Monocyclic Î²â€Łactams. Medicinal Research Reviews,<br>2018, 38, 426-503.                                                                                              | 5.0  | 73        |
| 8  | Intramolecular Ï€â^'Ï€ Stacking Interactions in 2-Substituted N,N-Dibenzylaziridinium Ions and Their<br>Regioselectivity in Nucleophilic Ring-Opening Reactions. Journal of Organic Chemistry, 2010, 75,<br>885-896.          | 1.7  | 66        |
| 9  | Synthesis and reactivity of spiro-fused $\hat{l}^2$ -lactams. Tetrahedron, 2011, 67, 1989-2012.                                                                                                                               | 1.0  | 64        |
| 10 | Systematic Study of Halideâ€Induced Ring Opening of 2â€5ubstituted Aziridinium Salts and Theoretical<br>Rationalization of the Reaction Pathways. European Journal of Organic Chemistry, 2010, 2010,<br>4920-4931.            | 1.2  | 63        |
| 11 | Selective pharmacological inhibitors of HDAC6 reveal biochemical activity but functional tolerance in cancer models. International Journal of Cancer, 2019, 145, 735-747.                                                     | 2.3  | 60        |
| 12 | Diastereoselective Synthesis of Bicyclic γ-Lactams via Ring Expansion of Monocyclic β-Lactams. Journal of Organic Chemistry, 2009, 74, 1644-1649.                                                                             | 1.7  | 59        |
| 13 | Design, Synthesis, and Antiviral Evaluation of Purine-β-lactam and Purine-aminopropanol Hybrids.<br>Journal of Medicinal Chemistry, 2012, 55, 5637-5641.                                                                      | 2.9  | 59        |
| 14 | Opposite Regiospecific Ring Opening of 2-(Cyanomethyl)aziridines by Hydrogen Bromide and Benzyl<br>Bromide: Experimental Study and Theoretical Rationalization. Journal of Organic Chemistry, 2010, 75,<br>4530-4541.         | 1.7  | 56        |
| 15 | Regio- and stereospecific ring opening of 1,1-dialkyl-2-(aryloxymethyl)aziridinium salts by bromide.<br>Chemical Communications, 2006, , 1554.                                                                                | 2.2  | 55        |
| 16 | Asymmetric Synthesis of 1-(2- and 3-Haloalkyl)azetidin-2-ones as Precursors for Novel Piperazine,<br>Morpholine, and 1,4-Diazepane Annulated Beta-Lactams. Journal of Organic Chemistry, 2006, 71,<br>7083-7086.              | 1.7  | 51        |
| 17 | Novel Synthesis of cis-3,5-Disubstituted Morpholine Derivatives. Journal of Organic Chemistry, 2006, 71, 4678-4681.                                                                                                           | 1.7  | 49        |
| 18 | Synthesis of 1-Alkyl-2-(trifluoromethyl)azetidines and Their Regiospecific Ring Opening toward Diverse<br>α-(Trifluoromethyl)Amines via Intermediate Azetidinium Salts. Journal of Organic Chemistry, 2012, 77,<br>5982-5992. | 1.7  | 48        |

| #  | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Selective Synthesis of cis- and trans-2-(Methyl/phenyl)-3-(trifluoromethyl)aziridines and Their Regio-<br>and Stereospecific Ring Opening. Journal of Organic Chemistry, 2014, 79, 5558-5568.                                                                                                 | 1.7 | 47        |
| 20 | Nucleophileâ€Directed Selective Transformation of<br><i>cis</i> â€1â€Tosylâ€2â€ŧosyloxymethylâ€3â€(trifluoromethyl)aziridine into Aziridines, Azetidines, and<br>Benzoâ€Fused Dithianes, Oxathianes, Dioxanes, and (Thio)morpholines. Chemistry - A European Journal,<br>2013, 19, 5966-5971. | 1.7 | 46        |
| 21 | New Synthesis of Propargylic Amines from 2-(Bromomethyl)aziridines. Intermediacy of<br>3-Bromoazetidinium Salts. Journal of Organic Chemistry, 2004, 69, 2703-2710.                                                                                                                           | 1.7 | 44        |
| 22 | Synthesis and applications of benzohydroxamic acid-based histone deacetylase inhibitors. European<br>Journal of Medicinal Chemistry, 2017, 135, 174-195.                                                                                                                                      | 2.6 | 44        |
| 23 | Exploration of aziridine- and $\hat{l}^2$ -lactam-based hybrids as both bioactive substances and synthetic intermediates in medicinal chemistry. Bioorganic and Medicinal Chemistry, 2013, 21, 3643-3647.                                                                                     | 1.4 | 43        |
| 24 | Bicyclic Aziridinium Ions in Azaheterocyclic Chemistry – Preparation and Synthetic Application of<br>1â€Azoniabicyclo[n.1.0]alkanes. Advanced Synthesis and Catalysis, 2016, 358, 3485-3511.                                                                                                  | 2.1 | 43        |
| 25 | Use of functionalized β-lactams as building blocks in heterocyclic chemistry. Pure and Applied Chemistry, 2010, 82, 1749-1759.                                                                                                                                                                | 0.9 | 42        |
| 26 | Synthesis of 3-Methoxyazetidines via an Aziridine to Azetidine Rearrangement and Theoretical Rationalization of the Reaction Mechanism. Journal of Organic Chemistry, 2011, 76, 2157-2167.                                                                                                    | 1.7 | 42        |
| 27 | Stereoselective Synthesis of Chiral 4-(1-Chloroalkyl)-β-Lactams Starting from Amino Acids and Their<br>Transformation into Functionalized Chiral Azetidines and Pyrrolidines. Journal of Organic Chemistry,<br>2010, 75, 5934-5940.                                                           | 1.7 | 40        |
| 28 | Synthetic Approaches toward Monocyclic 3â€Aminoâ€Î²â€lactams. ChemistryOpen, 2017, 6, 301-319.                                                                                                                                                                                                | 0.9 | 38        |
| 29 | Synthesis and reactivity of trans-2-aryl-3-chloroazetidines. Tetrahedron, 2006, 62, 6882-6892.                                                                                                                                                                                                | 1.0 | 37        |
| 30 | Nucleophile-dependent regioselective ring opening of 2-substituted N,N-dibenzylaziridinium ions:<br>bromide versus hydride. Chemical Communications, 2009, , 2508.                                                                                                                            | 2.2 | 37        |
| 31 | Novel synthesis of indolizidines and quinolizidines. Tetrahedron, 2003, 59, 3099-3108.                                                                                                                                                                                                        | 1.0 | 36        |
| 32 | Converting bulk sugars into prebiotics: semi-rational design of a transglucosylase with controlled selectivity. Chemical Communications, 2016, 52, 3687-3689.                                                                                                                                 | 2.2 | 36        |
| 33 | Synthesis of Stereodefined Piperidines from Aziridines and Their Transformation into<br>Conformationally Constrained Amino Acids, Amino Alcohols and 2,7-Diazabicyclo[3.3.1]nonanes.<br>Journal of Organic Chemistry, 2010, 75, 7734-7744.                                                    | 1.7 | 35        |
| 34 | Nucleophileâ€Dependent Regio―and Stereoselective Ring Opening of 1â€Azoniabicyclo[3.1.0]hexane Tosylate.<br>Chemistry - an Asian Journal, 2014, 9, 1060-1067.                                                                                                                                 | 1.7 | 34        |
| 35 | Synthesis of 1-Arylmethyl-2-(2-cyanoethyl)aziridines and Their Rearrangement into Novel<br>2-(Aminomethyl)cyclopropanecarbonitriles. Journal of Organic Chemistry, 2007, 72, 7329-7332.                                                                                                       | 1.7 | 33        |
| 36 | Stereoselective Synthesis of <i>cis</i> -3,4-Disubstituted Piperidines through Ring Transformation of 2-(2-Mesyloxyethyl)azetidines. Journal of Organic Chemistry, 2011, 76, 8364-8375.                                                                                                       | 1.7 | 33        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Stereoselective synthesis of trans- and cis-2-aryl-3-(hydroxymethyl)aziridines through transformation<br>of 4-aryl-3-chloro-β-lactams and study of their ring opening. Organic and Biomolecular Chemistry, 2010,<br>8, 607-615.                      | 1.5 | 32        |
| 38 | Straightforward synthesis of 1-alkyl-2-(trifluoromethyl)aziridines starting from 1,1,1-trifluoroacetone. Organic and Biomolecular Chemistry, 2011, 9, 7217.                                                                                          | 1.5 | 32        |
| 39 | Synthesis and cytotoxic evaluation of novel amide–triazole-linked triterpenoid–AZT conjugates.<br>Tetrahedron Letters, 2015, 56, 218-224.                                                                                                            | 0.7 | 32        |
| 40 | Deployment of Small-Ring Azaheterocycles as Building Blocks for the Synthesis of Organofluorine<br>Compounds. Synlett, 2016, 27, 1486-1510.                                                                                                          | 1.0 | 32        |
| 41 | Synthesis of 2-(aminomethyl)aziridines and their microwave-assisted ring opening to 1,2,3-triaminopropanes as novel antimalarial pharmacophores. European Journal of Medicinal Chemistry, 2011, 46, 579-587.                                         | 2.6 | 31        |
| 42 | Selective Synthesis of Functionalized Trifluoromethylated Pyrrolidines, Piperidines, and Azepanes<br>Starting from 1â€Tosylâ€2â€(trifluoromethyl)aziridine. Chemistry - A European Journal, 2014, 20, 10650-10653.                                   | 1.7 | 31        |
| 43 | Recent contributions of quinolines to antimalarial and anticancer drug discovery research. European<br>Journal of Medicinal Chemistry, 2021, 226, 113865.                                                                                            | 2.6 | 31        |
| 44 | Novel Synthesis of 3,4-Diaminobutanenitriles and 4-Amino-2-butenenitriles from<br>2-(Cyanomethyl)aziridines through Intermediate Aziridinium Salts:Â An Experimental and Theoretical<br>Approach. Journal of Organic Chemistry, 2007, 72, 4733-4740. | 1.7 | 30        |
| 45 | Carbonylation of Aziridines as a Powerful Tool for the Synthesis of Functionalized Î²â€Łactams. European<br>Journal of Organic Chemistry, 2017, 2017, 5943-5960.                                                                                     | 1.2 | 29        |
| 46 | A new approach towards 2-amino-1-aryloxy-3-methoxypropanes from<br>1-arylmethyl-2-(bromomethyl)aziridines. Tetrahedron, 2006, 62, 2295-2303.                                                                                                         | 1.0 | 28        |
| 47 | Highly Stereoselective Synthesis of βâ€Lactams Utilizing αâ€Chloroimines as New and Powerful Chiral<br>Inductors. Chemistry - A European Journal, 2008, 14, 6336-6340.                                                                               | 1.7 | 28        |
| 48 | Synthesis of 2-amino-3-arylpropan-1-ols and 1-(2,3-diaminopropyl)-1,2,3-triazoles and evaluation of their antimalarial activity. Beilstein Journal of Organic Chemistry, 2011, 7, 1745-1752.                                                         | 1.3 | 28        |
| 49 | Asymmetric synthesis of 4-formyl-1-(ω-haloalkyl)-β-lactams and their transformation to functionalized piperazines and 1,4-diazepanes. Tetrahedron, 2012, 68, 10827-10834.                                                                            | 1.0 | 28        |
| 50 | N-Heterocyclic carbene/BrÃ,nsted acid cooperative catalysis as a powerful tool in organic synthesis.<br>Beilstein Journal of Organic Chemistry, 2012, 8, 398-402.                                                                                    | 1.3 | 28        |
| 51 | Discovery of anxiolytic 2-ferrocenyl-1,3-thiazolidin-4-ones exerting GABAA receptor interaction via the benzodiazepine-binding site. European Journal of Medicinal Chemistry, 2014, 83, 57-73.                                                       | 2.6 | 28        |
| 52 | Synthesis of benzothiophene-based hydroxamic acids as potent and selective HDAC6 inhibitors.<br>Chemical Communications, 2015, 51, 9868-9871.                                                                                                        | 2.2 | 28        |
| 53 | Synthesis of Potent and Selective HDAC6 Inhibitors Bearing a Cyclohexane―or Cycloheptaneâ€Annulated<br>1,5â€Benzothiazepine Scaffold. Chemistry - A European Journal, 2017, 23, 128-136.                                                             | 1.7 | 28        |
| 54 | Synthesis of trans-4-aryl-3-(3-chloropropyl)azetidin-2-ones and their transformation into trans- and cis-2-arylpiperidine-3-carboxylates. Tetrahedron, 2008, 64, 4575-4584.                                                                          | 1.0 | 27        |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis of 3,4â€Fused Bicyclic Î²â€Łactams and Their Transformation into Methyl<br><i>cis</i> â€3â€Aminotetrahydrofuranâ€2â€carboxylates. European Journal of Organic Chemistry, 2010, 2010,<br>352-358.                                                             | 1.2 | 27        |
| 56 | Potent and selective HDAC6 inhibitory activity of<br>N-(4-hydroxycarbamoylbenzyl)-1,2,4,9-tetrahydro-3-thia-9-azafluorenes as novel sulfur analogues of<br>Tubastatin A. Chemical Communications, 2013, 49, 3775.                                                      | 2.2 | 27        |
| 57 | Synthesis and antiplasmodial evaluation of aziridine–(iso)quinoline hybrids and their ring-opening products. MedChemComm, 2013, 4, 724.                                                                                                                                | 3.5 | 27        |
| 58 | Synthesis of functionalized 3-, 5-, 6- and 8-aminoquinolines via intermediate (3-pyrrolin-1-yl)- and<br>(2-oxopyrrolidin-1-yl)quinolines and evaluation of their antiplasmodial and antifungal activity.<br>European Journal of Medicinal Chemistry, 2015, 92, 91-102. | 2.6 | 27        |
| 59 | Deployment of Aziridines for the Synthesis of Alkaloids and Their Derivatives. Synthesis, 2019, 51, 1491-1515.                                                                                                                                                         | 1.2 | 27        |
| 60 | Ring opening of 2-(bromomethyl)-1-sulfonylaziridines towards 1,3-heteroatom substituted 2-aminopropane derivatives. Tetrahedron, 2005, 61, 8746-8751.                                                                                                                  | 1.0 | 26        |
| 61 | Solvent-Controlled Selective Transformation of 2-Bromomethyl-2-methylaziridines to Functionalized Aziridines and Azetidines. Journal of Organic Chemistry, 2012, 77, 3181-3190.                                                                                        | 1.7 | 26        |
| 62 | Synthesis and biological evaluation of novel quinoline-piperidine scaffolds as antiplasmodium agents.<br>European Journal of Medicinal Chemistry, 2020, 198, 112330.                                                                                                   | 2.6 | 26        |
| 63 | Design and synthesis of novel ferrocene-quinoline conjugates and evaluation of their<br>electrochemical and antiplasmodium properties. European Journal of Medicinal Chemistry, 2020, 187,<br>111963.                                                                  | 2.6 | 24        |
| 64 | Synthesis of chiral 1,5-disubstituted pyrrolidinones via electrophile-induced cyclization of<br>2-(3-butenyl)oxazolines derived from (1R,2S)- and (1S,2R)-norephedrine. Tetrahedron: Asymmetry, 2006,<br>17, 2857-2863.                                                | 1.8 | 23        |
| 65 | A new entry into cis-3-amino-2-methylpyrrolidines viaring expansion of<br>2-(2-hydroxyethyl)-3-methylaziridines. Organic and Biomolecular Chemistry, 2009, 7, 135-141.                                                                                                 | 1.5 | 23        |
| 66 | A new approach towards 1-phenyl and 1-benzyl substituted 2-(aminomethyl)cyclopropanecarboxamides<br>as novel derivatives of the antidepressant Milnacipran. Organic and Biomolecular Chemistry, 2009, 7,<br>3271.                                                      | 1.5 | 23        |
| 67 | Ring opening reactions of 1-arenesulfonyl-2-(bromomethyl)aziridines. Tetrahedron, 2004, 60, 3637-3641.                                                                                                                                                                 | 1.0 | 22        |
| 68 | Synthesis of 1-Arylmethyl-2-(cyanomethyl)aziridines and Their Ring Transformation into<br>MethylN-(2-Cyanocyclopropyl)benzimidates. Journal of Organic Chemistry, 2006, 71, 4232-4236.                                                                                 | 1.7 | 22        |
| 69 | Synthesis of novel curcuminoids accommodating a central β-enaminone motif and their impact on cell growth and oxidative stress. European Journal of Medicinal Chemistry, 2016, 123, 727-736.                                                                           | 2.6 | 22        |
| 70 | Synthesis of Novel Azaâ€ <b>a</b> romatic Curcuminoids with Improved Biological Activities towards Various<br>Cancer Cell Lines. ChemistryOpen, 2018, 7, 381-392.                                                                                                      | 0.9 | 22        |
| 71 | Ring opening of 2-(cyanomethyl)aziridines by acid chlorides: synthesis of novel 4-amino-2-butenenitrile derivatives through intermediate aziridinium salts. Tetrahedron Letters, 2007, 48, 1771-1774.                                                                  | 0.7 | 21        |
| 72 | LiAlH <sub>4</sub> â€Induced Selective Ring Rearrangement of 2â€(2â€Cyanoethyl)aziridines toward<br>2â€(Aminomethyl)pyrrolidines and 3â€Aminopiperidines as Eligible Heterocyclic Building Blocks. Chemistry<br>- A European Journal, 2016, 22, 4945-4951.             | 1.7 | 21        |

| #  | Article                                                                                                                                                                                                                                      | IF               | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 73 | Synthesis and SAR assessment of novel Tubathian analogs in the pursuit of potent and selective HDAC6 inhibitors. Organic and Biomolecular Chemistry, 2016, 14, 2537-2549.                                                                    | 1.5              | 21        |
| 74 | Cobalt carbonyl-catalyzed carbonylation of functionalized aziridines to versatile β-lactam building blocks. Organic and Biomolecular Chemistry, 2017, 15, 4816-4821.                                                                         | 1.5              | 21        |
| 75 | Microwave-assisted regioselective ring opening of non-activated aziridines by lithium aluminium hydride. Organic and Biomolecular Chemistry, 2010, 8, 4266.                                                                                  | 1.5              | 20        |
| 76 | Synthesis of 2â€Hydroxyâ€1,4â€oxazinâ€3â€ones through Ring Transformation of<br>3â€Hydroxyâ€4â€(1,2â€dihydroxyethyl)â€Î²â€lactams and a Study of Their Reactivity. Chemistry - A European Jo<br>2013, 19, 3383-3396.                         | our <b>na</b> l, | 20        |
| 77 | Expedient stereoselective synthesis of new dihydropyrano- and dihydrofuranonaphthoquinones.<br>Tetrahedron Letters, 2015, 56, 2422-2425.                                                                                                     | 0.7              | 20        |
| 78 | Synthesis of Trifluoromethylated Azetidines, Aminopropanes, 1,3-Oxazinanes, and 1,3-Oxazinan-2-ones<br>Starting from 4-Trifluoromethyl-l²-lactam Building Blocks. Synlett, 2016, 27, 1100-1105.                                              | 1.0              | 20        |
| 79 | Reactivity of N-(ω-haloalkyl)-β-lactams with regard to lithium aluminium hydride: novel synthesis of<br>1-(1-aryl-3-hydroxypropyl)aziridines and 3-aryl-3-(N-propylamino)propan-1-ols. Organic and Biomolecular<br>Chemistry, 2008, 6, 1190. | 1.5              | 19        |
| 80 | Rhodium-catalysed hydroformylation of N-(2-propenyl)-β-lactams as a key step in the synthesis of<br>functionalised N-[4-(2-oxoazetidin-1-yl)but-1-enyl]acetamides. New Journal of Chemistry, 2010, 34, 1079.                                 | 1.4              | 19        |
| 81 | Synthesis and antiplasmodial evaluation of novel (4-aminobutyloxy)quinolines. Bioorganic and<br>Medicinal Chemistry Letters, 2013, 23, 318-322.                                                                                              | 1.0              | 19        |
| 82 | Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1214-1217.                                                                                      | 1.0              | 19        |
| 83 | Synthesis of novel 4-ferrocenyl-1,2,3,4-tetrahydroquinolines and 4-ferrocenylquinolines via<br>α-ferrocenyl carbenium ions as key intermediates. Tetrahedron, 2017, 73, 6268-6274.                                                           | 1.0              | 18        |
| 84 | Synthesis and Reactivity of 3-Haloazetidines and 3-Sulfonyloxyazetidines: A Review. Current Organic<br>Chemistry, 2009, 13, 829-853.                                                                                                         | 0.9              | 17        |
| 85 | Reactivity of Activated versus Nonactivated 2-(Bromomethyl)aziridines with respect to Sodium<br>Methoxide: A Combined Computational and Experimental Study. Journal of Organic Chemistry, 2011, 76,<br>8698-8709.                            | 1.7              | 17        |
| 86 | Exploration of thiaheterocyclic <i>h</i> HDAC6 inhibitors as potential antiplasmodial agents. Future<br>Medicinal Chemistry, 2017, 9, 357-364.                                                                                               | 1.1              | 17        |
| 87 | Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase. Applied Microbiology and Biotechnology, 2018, 102, 3183-3191.                                                           | 1.7              | 17        |
| 88 | Novel synthesis of 2-aminopentanedinitriles from 2-(bromomethyl)aziridines and their transformation<br>into 2-imino-5-methoxypyrrolidines and 5-methoxypyrrolidin-2-ones. Tetrahedron, 2008, 64, 1064-1070.                                  | 1.0              | 16        |
| 89 | Synthesis and synthetic applications of 2-amino-3-halo-1-oxypropanes. Tetrahedron, 2008, 64, 3275-3285.                                                                                                                                      | 1.0              | 16        |
| 90 | Theoretical insight into the regioselective ring-expansions of bicyclic aziridinium ions. Organic and<br>Biomolecular Chemistry, 2018, 16, 796-806.                                                                                          | 1.5              | 16        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Carboxylic Acid Bioisosteres in Medicinal Chemistry: Synthesis and Properties. Journal of Chemistry, 2022, 2022, 1-21.                                                                                                                                 | 0.9 | 16        |
| 92  | Highly unusual conversion of 1-alkyl-2-(bromomethyl)aziridines into<br>1-alkyl-2-(N-alkyl-N-ethylaminomethyl)aziridines using methyllithium. Chemical Communications, 2007, ,<br>1275.                                                                 | 2.2 | 15        |
| 93  | Electrophilic Bromination in Flow: A Safe and Sustainable Alternative to the Use of Molecular<br>Bromine in Batch. Molecules, 2019, 24, 2116.                                                                                                          | 1.7 | 15        |
| 94  | Reduction of 5-(bromomethyl)-1-pyrrolinium bromides to 2-(bromomethyl)pyrrolidines and their<br>transformation into piperidin-3-ones through an unprecedented ring expansion-oxidation protocol.<br>Tetrahedron Letters, 2008, 49, 6039-6042.          | 0.7 | 14        |
| 95  | Synthesis and Applications of 3â€Methyleneâ€4â€(trifluoromethyl)azetidinâ€2â€ones as Building Blocks for the Preparation of Mono―and Spirocyclic 4â€CF <sub>3</sub> â€Î²â€Lactams. Asian Journal of Organic Chemistry, 2016, 5, 1480-1491.             | 1.3 | 14        |
| 96  | Synthesis and reactivity of non-activated 2-(chloromethyl)aziridines. Tetrahedron Letters, 2011, 52, 4529-4532.                                                                                                                                        | 0.7 | 13        |
| 97  | Synthesis of 2-aryl-3-(2-cyanoethyl)aziridines and their chemical and enzymatic hydrolysis towards<br>γ-lactams and γ-lactones. Organic and Biomolecular Chemistry, 2015, 13, 2716-2725.                                                               | 1.5 | 13        |
| 98  | Synthesis and Antimicrobial/Cytotoxic Assessment of Ferrocenyl Oxazinanes, Oxazinan-2-ones, and<br>Tetrahydropyrimidin-2-ones. Synlett, 2015, 26, 1195-1200.                                                                                           | 1.0 | 13        |
| 99  | Synthesis and cytotoxic evaluation of novel dihydrobenzo[h]cinnoline-5,6-diones. Tetrahedron Letters, 2015, 56, 5855-5858.                                                                                                                             | 0.7 | 13        |
| 100 | Synthesis and biological assessment of novel N -(hydroxy/methoxy)alkyl β-enaminone curcuminoids.<br>Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5650-5656.                                                                                   | 1.0 | 13        |
| 101 | Asymmetric Synthesis of 3,4-Disubstituted 2-(Trifluoromethyl)pyrrolidines through Rearrangement of<br>Chiral 2-(2,2,2-Trifluoro-1-hydroxyethyl)azetidines. Journal of Organic Chemistry, 2017, 82, 10092-10109.                                        | 1.7 | 13        |
| 102 | In Silico Design and Enantioselective Synthesis of Functionalized Monocyclic<br>3â€Aminoâ€1â€carboxymethylâ€Î²â€lactams as Inhibitors of Penicillinâ€Binding Proteins of Resistant Bacteria.<br>Chemistry - A European Journal, 2018, 24, 15254-15266. | 1.7 | 13        |
| 103 | Synthesis and cytotoxic evaluation of novel indenoisoquinoline-propan-2-ol hybrids. Tetrahedron<br>Letters, 2016, 57, 466-471.                                                                                                                         | 0.7 | 12        |
| 104 | Synthesis of Nonâ€Symmetrical Nitrogenâ€Containing Curcuminoids in the Pursuit of New Anticancer<br>Candidates. ChemistryOpen, 2019, 8, 236-247.                                                                                                       | 0.9 | 12        |
| 105 | Synthesis of Stereodefined 3,4-Disubstituted Piperidines through Rearrangement of 2-(2-Bromo-1,1-dimethylethyl)azetidines. Heterocycles, 2012, 84, 431.                                                                                                | 0.4 | 11        |
| 106 | Synthesis of 3-functionalized 3-methylazetidines. Tetrahedron Letters, 2012, 53, 107-110.                                                                                                                                                              | 0.7 | 11        |
| 107 | A convenient approach towards the 1-aminomethyl-1-fluorocycloalkane scaffold. Tetrahedron Letters, 2013, 54, 6110-6113.                                                                                                                                | 0.7 | 11        |
| 108 | Use of 3-Hydroxy-4-(trifluoromethyl)azetidin-2-ones as Building Blocks for the Preparation of<br>Trifluoromethyl-Containing Aminopropanes, 1,3-Oxazinan-2-ones, Aziridines, and 1,4-Dioxan-2-ones.<br>Synthesis, 2018, 50, 1439-1456.                  | 1.2 | 11        |

| #   | Article                                                                                                                                                                                                                                                                  | IF           | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 109 | Chemoenzymatic Approach toward the Synthesis of 3- <i>O</i> -(α/β)-Glucosylated 3-Hydroxy-β-lactams. ACS<br>Omega, 2018, 3, 15235-15245.                                                                                                                                 | 1.6          | 11        |
| 110 | Synthesis of quaternary allylammonium salts via ring opening of 1-benzyl-2-(bromomethyl)aziridines.<br>Tetrahedron, 2003, 59, 5383-5386.                                                                                                                                 | 1.0          | 10        |
| 111 | Diastereoselective synthesis of 3-acetoxy-4-(3-aryloxiran-2-yl)azetidin-2-ones and their transformation<br>into 3,4-oxolane-fused bicyclic β-lactams. Organic and Biomolecular Chemistry, 2016, 14, 11279-11288.                                                         | 1.5          | 10        |
| 112 | Synthesis of 1,4â€Thiazepaneâ€Based Curcuminoids with Promising Anticancer Activity. Chemistry - A<br>European Journal, 2019, 25, 12583-12600.                                                                                                                           | 1.7          | 10        |
| 113 | αâ€Unsaturated 3â€Aminoâ€1â€carboxymethylâ€Î²â€lactams as Bacterial PBP Inhibitors: Synthesis and Biochen<br>Assessment. Chemistry - A European Journal, 2019, 25, 16128-16140.                                                                                          | nical<br>1.7 | 10        |
| 114 | Electrophile-induced bromocyclization of γ,Î-unsaturated ketimines to intermediate 1-pyrrolinium salts<br>and their selective conversion into novel 5-alkoxymethyl-2-aryl-3-chloropyrroles and 2-aroylpyrroles.<br>Organic and Biomolecular Chemistry, 2008, 6, 3667.    | 1.5          | 9         |
| 115 | Synthesis of Novel Thymine-β-lactam Hybrids and Evaluation of Their Antitumor Activity. Synthesis, 2014, 46, 2436-2444.                                                                                                                                                  | 1.2          | 9         |
| 116 | Front Cover Picture: Bicyclic Aziridinium Ions in Azaheterocyclic Chemistry - Preparation and<br>Synthetic Application of 1-Azoniabicyclo[n.1.0]alkanes (Adv. Synth. Catal. 22/2016). Advanced Synthesis<br>and Catalysis, 2016, 358, 3483-3483.                         | 2.1          | 9         |
| 117 | LiAlH <sub>4</sub> â€Induced Thiaâ€Azaâ€Payne Rearrangement of Functionalized<br>2â€(Thiocyanatomethyl)aziridines into 2â€(Aminomethyl)thiiranes as an Entry to<br>5â€(Chloromethyl)thiazolidinâ€2â€ones. European Journal of Organic Chemistry, 2017, 2017, 3229-3233.  | 1.2          | 9         |
| 118 | Stereospecific aziridination of olefins via electrophile-induced cyclization of γ,β-unsaturated imines and subsequent hydrolytic rearrangement. Chemical Communications, 2007, , 1927-1929.                                                                              | 2.2          | 8         |
| 119 | Synthesis of 2-aminomethyl-4-phenyl-1-azabicyclo[2.2.1]heptanes via LiAlH4-induced reductive cyclization of 2-(4-chloro-2-cyano-2-phenylbutyl)aziridines and evaluation of their antimalarial activity. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1507-1510. | 1.0          | 8         |
| 120 | Reactivity of 3â€Oxoâ€Î²â€lactams with Respect to Primary Amines—An Experimental and Computational<br>Approach. Chemistry - A European Journal, 2017, 23, 18002-18009.                                                                                                   | 1.7          | 8         |
| 121 | Synthesis and cytotoxic evaluation of monocarbonyl curcuminoids and their pyrazoline derivatives.<br>Monatshefte FA¼r Chemie, 2019, 150, 2045-2051.                                                                                                                      | 0.9          | 8         |
| 122 | Identification of mercaptoacetamide-based HDAC6 inhibitors <i>via</i> a lean inhibitor strategy: screening, synthesis, and biological evaluation. Chemical Communications, 2022, 58, 6239-6242.                                                                          | 2.2          | 8         |
| 123 | A new route towards N-(α-methoxybenzyl)aziridines. Tetrahedron Letters, 2003, 44, 1137-1139.                                                                                                                                                                             | 0.7          | 7         |
| 124 | A nitrilase-mediated entry to 4-carboxymethyl-β-lactams from chemically prepared<br>4-(cyanomethyl)azetidin-2-ones. RSC Advances, 2016, 6, 54573-54579.                                                                                                                  | 1.7          | 7         |
| 125 | Evolution of Phosphorylases from <i>N</i> -Acetylglucosaminide Hydrolases in Family GH3. ACS<br>Catalysis, 2021, 11, 6225-6233.                                                                                                                                          | 5.5          | 7         |
| 126 | Synthesis of bicyclic carbamates as precursors of Sedum alkaloid derivatives. Tetrahedron, 2005, 61, 1595-1602.                                                                                                                                                          | 1.0          | 6         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Opposite Regioselectivity in the Sequential Ring-Opening of 2-(Alkanoyloxymethyl)aziridinium Salts by<br>Bromide and Fluoride in the Synthesis of Functionalized I²-Fluoro Amines. Synlett, 2006, 2006, 2089-2093. | 1.0 | 6         |
| 128 | Synthesis of piperidin-4-ones starting from 2-(2-bromo-1,1-dimethylethyl)azetidines and<br>2-(2-mesyloxyethyl)azetidines through a ring expansion–oxidation protocol. Tetrahedron, 2013, 69,<br>2603-2607.         | 1.0 | 6         |
| 129 | Synthesis and reactivity of 4-(trifluoromethyl)azetidin-2-ones. Monatshefte Für Chemie, 2018, 149, 687-700.                                                                                                        | 0.9 | 6         |
| 130 | Synthesis of Novel Nitroxoline Analogs with Potent Cathepsin B Exopeptidase Inhibitory Activity.<br>ChemMedChem, 2020, 15, 2477-2490.                                                                              | 1.6 | 6         |
| 131 | Application of 3-Bromo-3-ethylazetidines and 3-Ethylideneazetidines for the Synthesis of Functionalized Azetidines. Synlett, 2013, 25, 75-80.                                                                      | 1.0 | 5         |
| 132 | Concise Synthesis of 3-(Aminomethyl)pyrrolizidines via an In(OTf)3-Mediated Ring Rearrangement of 2-[2-(1-Pyrrolin-2-yl)-alkyl]aziridines. Synthesis, 2017, 49, 2215-2222.                                         | 1.2 | 5         |
| 133 | SYNTHESIS OF <i>N</i> -(4-CHLOROBUTYL)BUTANAMIDE, A CHLORINATED AMIDE ISOLATED FROM <i>ALOE SABAEA</i> . Organic Preparations and Procedures International, 2003, 35, 501-507.                                     | 0.6 | 4         |
| 134 | Synthesis of Functionalized 1,4-Dihydro-9,10-anthraquinones and Anthraquinones by Ring Closing<br>Metathesis Using Grubbs' Catalyst. Synlett, 2004, 2004, 1913-1916.                                               | 1.0 | 4         |
| 135 | Synthesis of 2-[(Arylmethylene)amino]cyclopropanecarbonitriles via a Two-Step Ring Transformation of 2-(Cyanomethyl)aziridines. Synthesis, 2009, 2009, 1105-1112.                                                  | 1.2 | 4         |
| 136 | Recent Progress in the Use of Functionalized β-Lactams as Building Blocks in Heterocyclic Chemistry.<br>Progress in Heterocyclic Chemistry, 2016, 28, 27-55.                                                       | 0.5 | 4         |
| 137 | Formation of Fluorinated Amido Esters through Unexpected C3â^C4 Bond Fission in<br>4â€Trifluoromethylâ€3â€oxoâ€Î²â€lactams. Chemistry - an Asian Journal, 2018, 13, 421-431.                                       | 1.7 | 4         |
| 138 | Assessment of the trifluoromethyl ketone functionality as an alternative zinc-binding group for selective HDAC6 inhibition. MedChemComm, 2018, 9, 1011-1016.                                                       | 3.5 | 4         |
| 139 | Expedient Synthesis of Lupulones and Their Derivatization to 2,8â€7 <i>H</i> â€Dihydrochromenâ€7â€ones.<br>ChemistryOpen, 2020, 9, 442-444.                                                                        | 0.9 | 4         |
| 140 | Synthesis of Novel 3-Oxopiperidin-2-ones from Methyl 2-Alkoxy-5-amino-2-pentenoates. Synlett, 2008, 2008, 1961-1964.                                                                                               | 1.0 | 3         |
| 141 | One-Pot Synthesis of 3,3-Dimethylpyrrolidine-2-carbonitriles from 4-Chloro-2,2-dimethylbutanal in<br>Water. Heterocycles, 2009, 77, 255.                                                                           | 0.4 | 3         |
| 142 | Synthesis and Penicillinâ€binding Protein Inhibitory Assessment of Dipeptidic 4â€Phenylâ€Î²â€lactams from<br>αâ€Amino Acidâ€derived Imines. Chemistry - an Asian Journal, 2020, 15, 51-55.                         | 1.7 | 3         |
| 143 | Reactivity of 1-alkyl-2-(bromomethyl)aziridines towards n-butyllithium. Arkivoc, 2007, 2007, 365-373.                                                                                                              | 0.3 | 3         |
| 144 | Coupling of 1-Alkyl-2-(bromomethyl)aziridines with Lithium Dialkylcuprates towards 1,2-Dialkylaziridines. Synlett, 2005, 2005, 0931-0934.                                                                          | 1.0 | 2         |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Synthesis of 2-(3-hydroxy-2-methyl-1-alkenyl)-1-pyrrolines and 2-(3-hydroxybutyl)-1-pyrroline using<br>α-lithiated 2-methyl-1-pyrroline. Tetrahedron, 2009, 65, 3753-3756.                      | 1.0 | 2         |
| 146 | Synthesis of bis-8-hydroxyquinolines via an imination or a Suzuki-Miyaura coupling approach.<br>Tetrahedron Letters, 2017, 58, 3803-3807.                                                       | 0.7 | 2         |
| 147 | Use of α,ï‰-Dichloroketimine Building Blocks for the Construction of 1-Azabicyclo[3.1.0]hexanes,<br>Piperidines, Pyridines, Pyrroles, and Tetrahydroindoles. Synlett, 2017, 28, 207-213.        | 1.0 | 2         |
| 148 | Synthesis and Reactivity of Novel α,α,β- and α,α,δ-Trichlorinated Imines. Synlett, 2008, 2008, 2437-2442.                                                                                       | 1.0 | 1         |
| 149 | Synthesis of Indolineâ€Based Benzhydroxamic Acids as Potential HDAC6 Inhibitors. ChemistrySelect, 2019, 4, 12308-12312.                                                                         | 0.7 | 1         |
| 150 | The Mechanism of Nucleophilic Substitution of 1-Alkyl-2-(tosyloxymethyl)-aziridines. Synlett, 2004, 2004, 0271-0274.                                                                            | 1.0 | 0         |
| 151 | Unexpected formation of 2,2â€dichloroâ€Nâ€(chloromethyl)acetamides during attempted Staudinger<br>2,2â€dichloroâ€Î²â€lactam synthesis. European Journal of Organic Chemistry, 2021, 2021, 5823. | 1.2 | 0         |