Rubiana Mara Mainardes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4522351/publications.pdf

Version: 2024-02-01

73 papers

3,283 citations

30 h-index 55 g-index

73 all docs

73 docs citations

times ranked

73

5274 citing authors

#	Article	IF	Citations
1	Chitosan-coated poly(\tilde{N} "-caprolactone) nanocapsules for mucoadhesive applications of perillyl alcohol. Soft Materials, 2022, 20, 1-11.	1.7	8
2	Polyethylene Glycol-Stabilized Zein Nanoparticles Containing Gallic Acid. Food Technology and Biotechnology, 2022, 60, 145-154.	2.1	7
3	Intranasal administration of perillyl alcohol–loaded nanoemulsion and pharmacokinetic study of its metabolite perillic acid in plasma and brain of rats using ultraâ€performance liquid chromatography/tandem mass spectrometry. Biomedical Chromatography, 2021, 35, e5037.	1.7	7
4	Optimized Chitosan-Coated Gliadin Nanoparticles Improved the Hesperidin Cytotoxicity over Tumor Cells. Brazilian Archives of Biology and Technology, 2021, 64, .	0.5	4
5	Chitosan modified poly (lactic acid) nanoparticles increased the ursolic acid oral bioavailability. International Journal of Biological Macromolecules, 2021, 172, 133-142.	7.5	27
6	Nanoparticles as a Tool for Broadening Antifungal Activities. Current Medicinal Chemistry, 2021, 28, 1841-1873.	2.4	11
7	Ursolic acid-loaded lipid-core nanocapsules reduce damage caused by estrogen deficiency in wound healing. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111720.	5.0	16
8	Chitosan Nanoparticles Potentiate the in vitro and in vivo Effects of Curcumin and other Natural Compounds. Current Medicinal Chemistry, 2021, 28, 4935-4953.	2.4	5
9	The potential role of nanomedicine on COVID-19 therapeutics. Therapeutic Delivery, 2020, 11, 411-414.	2.2	40
10	Zein-casein-lysine multicomposite nanoparticles are effective in modulate the intestinal permeability of ferulic acid. International Journal of Biological Macromolecules, 2019, 138, 244-251.	7.5	38
11	Nanoparticles of bovine serum albumin for encapsulation of food ingredients. , 2019, , 169-186.		2
12	Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity. Food Hydrocolloids, 2019, 94, 411-417.	10.7	120
13	Antifungal Activity of Chitosan-Coated Poly(lactic-co-glycolic) Acid Nanoparticles Containing Amphotericin B. Mycopathologia, 2018, 183, 659-668.	3.1	27
14	Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery. Expert Opinion on Drug Delivery, 2018, 15, 213-222.	5.0	35
15	Bovine serum albumin nanoparticles improve the antitumour activity of curcumin in a murine melanoma model. Journal of Microencapsulation, 2018, 35, 467-474.	2.8	16
16	Chitosan functionalized poly (ε-caprolactone) nanoparticles for amphotericin B delivery. Carbohydrate Polymers, 2018, 202, 345-354.	10.2	55
17	Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 993-1002.	2.8	81
18	Formulation, characterization, and in vitro/in vivo studies of capsaicin-loaded albumin nanoparticles. Materials Science and Engineering C, 2018, 93, 70-79.	7.3	39

#	Article	IF	Citations
19	Bovine serum albumin nanoparticles containing amphotericin B were effective in treating murine cutaneous leishmaniasis and reduced the drug toxicity. Experimental Parasitology, 2018, 192, 12-18.	1.2	40
20	PLGA Nanoparticles and Polysorbate-80-Coated PLGA Nanoparticles Increase the In vitro Antioxidant Activity of Melatonin. Current Drug Delivery, 2018, 15, 554-563.	1.6	20
21	Preparation and In vitro Evaluation of Efficacy and Toxicity of Polysorbate 80-coated Bovine Serum Albumin Nanoparticles containing Amphotericin B. Current Drug Delivery, 2018, 15, 1055-1063.	1.6	3
22	Curcumin, a Multitarget Phytochemical. Studies in Natural Products Chemistry, 2017, 53, 243-276.	1.8	23
23	Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly(lactic acid) nanoparticles. Journal of Pharmaceutical Analysis, 2017, 7, 388-393.	5.3	27
24	Bovine serum albumin-based nanoparticles containing resveratrol: Characterization and antioxidant activity. Journal of Drug Delivery Science and Technology, 2017, 39, 147-155.	3.0	45
25	Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. Journal De Mycologie Medicale, 2017, 27, 519-529.	1.5	40
26	Preparation, physicochemical characterization and antioxidant activity of diphenyl diselenide-loaded poly(lactic acid) nanoparticles. Journal of Trace Elements in Medicine and Biology, 2017, 39, 176-185.	3.0	12
27	A stability-indicating high performance liquid chromatography method to determine apocynin in nanoparticles. Journal of Pharmaceutical Analysis, 2017, 7, 129-133.	5.3	8
28	Poly(lactic acid) nanoparticles loaded with ursolic acid: Characterization and in vitro evaluation of radical scavenging activity and cytotoxicity. Materials Science and Engineering C, 2017, 71, 156-166.	7. 3	24
29	A stability-indicating HPLC-PDA method for the determination of ferulic acid in chitosan-coated poly(lactide-co-glycolide) nanoparticles. Brazilian Journal of Pharmaceutical Sciences, 2017, 53, .	1.2	7
30	Exploring the Role of Nanoparticles in Amphotericin B Delivery. Current Pharmaceutical Design, 2017, 23, 509-521.	1.9	28
31	Development and Validation of HPLC–PDA Method for the Quantitative Determination of Diphenyl Diselenide in Poly(lactide) Nanoparticles. Current Pharmaceutical Analysis, 2016, 12, 121-128.	0.6	5
32	Antioxidant and antifungal activities of Camellia sinensis (L.) Kuntze leaves obtained by different forms of production. Brazilian Journal of Biology, 2016, 76, 428-434.	0.9	30
33	Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth. Colloids and Surfaces B: Biointerfaces, 2016, 144, 65-72.	5.0	66
34	Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design. Pharmaceutical Development and Technology, 2016, 21, 140-146.	2.4	16
35	Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity. Materials Science and Engineering C, 2016, 62, 1-8.	7. 3	40
36	Polymeric nanoparticles for oral delivery of 5-fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. European Journal of Pharmaceutical Sciences, 2016, 84, 83-91.	4.0	63

#	Article	IF	Citations
37	Bovine Serum Albumin Nanoparticles Containing Quercetin: Characterization and Antioxidant Activity. Journal of Nanoscience and Nanotechnology, 2016, 16, 1346-1353.	0.9	34
38	Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Materials Science and Engineering C, 2016, 60, 126-134.	7.3	84
39	Tamoxifen-loaded poly(L-lactide) nanoparticles: Development, characterization and in vitro evaluation of cytotoxicity. Materials Science and Engineering C, 2016, 60, 135-142.	7.3	48
40	Poly(L-lactide) Nanoparticles Reduce Amphotericin B Cytotoxicity and Maintain Its <i>In Vitro</i> Antifungal Activity. Journal of Nanoscience and Nanotechnology, 2015, 15, 848-854.	0.9	33
41	Influence of the Formulation Parameters on the Particle Size and Encapsulation Efficiency of Resveratrol in PLA and PLA-PEG Blend Nanoparticles: A Factorial Design. Journal of Nanoscience and Nanotechnology, 2015, 15, 10173-10182.	0.9	6
42	Bovine Serum Albumin Nanoparticles Containing Amphotericin B: Characterization, Cytotoxicity and <l>ln Vitro</l> Antifungal Evaluation. Journal of Nanoscience and Nanotechnology, 2015, 15, 10183-10188.	0.9	26
43	Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine, 2015, 10, 1127-1138.	3.3	99
44	Determination of amphotericin B in PLA-PEG blend nanoparticles by HPLC-PDA. Brazilian Journal of Pharmaceutical Sciences, 2014, 50, 859-868.	1.2	7
45	Nanotechnological Strategies for the Treatment of Neglected Diseases. Current Pharmaceutical Design, 2013, 19, 7316-7329.	1.9	30
46	Effect of the o-methyl catechols apocynin, curcumin and vanillin on the cytotoxicity activity of tamoxifen. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 734-740.	5.2	22
47	Efeito da nicotina sobre fag $ ilde{A}^3$ citos ativados. Acta Scientiarum - Health Sciences, 2013, 35, .	0.2	O
48	Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids and Surfaces B: Biointerfaces, 2013, 101, 353-360.	5.0	327
49	Development and validation of an HPLC method for the determination of fluorouracil in polymeric nanoparticles. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 117-126.	1.2	33
50	Resveratrol-Loaded Polymeric Nanoparticles: Validation of an HPLC-PDA Method to Determine the Drug Entrapment and Evaluation of Its Antioxidant Activity. Scientific World Journal, The, 2013, 2013, 1-9.	2.1	25
51	Amphotericin B-Loaded Poly(Lactide)-Poly(Ethylene Glycol)-Blend Nanoparticles: Characterization and In Vitro Efficacy and Toxicity. Current Nanoscience, 2013, 9, 594-598.	1.2	6
52	Development and Validation of an HPLC Method Using Fluorescence Detection for the Quantitative Determination of Curcumin in PLGA and PLGA-PEG Nanoparticles. Current Pharmaceutical Analysis, 2012, 8, 324-333.	0.6	19
53	Nanoencapsulation and Characterization of Zidovudine on Poly(L-lactide) and Poly(L-lactide)—Poly(ethylene glycol)-Blend Nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12, 8513-8521.	0.9	19
54	PHBV/PCL Microparticles for Controlled Release of Resveratrol: Physicochemical Characterization, Antioxidant Potential, and Effect on Hemolysis of Human Erythrocytes. Scientific World Journal, The, 2012, 2012, 1-13.	2.1	69

#	Article	IF	Citations
55	Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid. Food Chemistry, 2012, 133, 1001-1005.	8.2	60
56	Simple and facile approach to synthesize magnetite nanoparticles and assessment of their effects on blood cells. Journal of Magnetism and Magnetic Materials, 2012, 324, 559-563.	2.3	27
57	A quantitative validated method using liquid chromatography and chemometric analysis for evaluation of raw material oF Maytenus ilicifolia (Schrad.) Planch., Celastraceae. Quimica Nova, 2012, 35, 327-331.	0.3	3
58	Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opinion on Drug Delivery, 2011, 8, 95-112.	5.0	33
59	Intranasal delivery of zidovudine by PLA and PLA–PEG blend nanoparticles. International Journal of Pharmaceutics, 2010, 395, 266-271.	5 . 2	60
60	Development and validation of HPLC method for analysis of dexamethasone acetate in microemulsions. Brazilian Journal of Pharmaceutical Sciences, 2009, 45, 87-92.	1.2	16
61	Colloidal Polymeric Nanoparticles and Brain Drug Delivery. Current Drug Delivery, 2009, 6, 261-273.	1.6	15
62	Zidovudine-loaded PLA and PLA–PEG blend nanoparticles: Influence of polymer type on phagocytic uptake by polymorphonuclear cells. Journal of Pharmaceutical Sciences, 2009, 98, 257-267.	3.3	80
63	Reversed phase HPLC determination of zidovudine in rat plasma and its pharmacokinetics after a single intranasal dose administration. Biological Research, 2009, 42, .	3.4	6
64	Development of Praziquantel-Loaded PLGA Nanoparticles and Evaluation of Intestinal Permeation by the Everted Gut Sac Model. Journal of Nanoscience and Nanotechnology, 2006, 6, 3057-3061.	0.9	22
65	Liposomes and Micro/Nanoparticles as Colloidal Carriers for Nasal Drug Delivery. Current Drug Delivery, 2006, 3, 275-285.	1.6	103
66	Thermoanalytical study of praziquantel-loaded PLGA nanoparticles. BJPS: Brazilian Journal of Pharmaceutical Sciences, 2006, 42, 523-530.	0.5	61
67	PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. International Journal of Pharmaceutics, 2005, 290, 137-144.	5.2	406
68	Colloidal Carriers for Ophthalmic Drug Delivery. Current Drug Targets, 2005, 6, 363-371.	2.1	131
69	Praziquantel-loaded PLGA nanoparticles: preparation and characterization. Journal of Microencapsulation, 2005, 22, 13-24.	2.8	63
70	Drug Delivery Systems: Past, Present, and Future. Current Drug Targets, 2004, 5, 449-455.	2.1	225
71	Thermal Decomposition Synthesis and Assessment of Effects on Blood Cells and <i>In Vivo</i> Damages of Cobalt Ferrite Nanoparticles. Journal of Nano Research, 0, 28, 131-140.	0.8	20
72	Bovine serum albumin-based nanoparticles containing the flavonoid rutin produced by nano spray drying. Brazilian Journal of Pharmaceutical Sciences, 0, 56, .	1.2	29

#	Article	IF	CITATIONS
73	DEVELOPMENT AND VALIDATION OF A FAST AND SENSITIVE UHPLC-PDA METHOD FOR THE QUANTIFICATION OF URSOLIC ACID IN POLY(L-LACTIC ACID) NANOCAPSULES. Asian Journal of Pharmaceutical and Clinical Research, 0, , 161-165.	0.3	1