Sajal Biring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4522319/publications.pdf

Version: 2024-02-01

		279798	414414
81	1,459	23	32
papers	citations	h-index	g-index
81	81	81	1618
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	In-situ grown nanoscale p-n heterojuction of Cu2S-TiO2 thin film for efficient photoelectrocatalytic H2 evolution. Surfaces and Interfaces, 2022, 28, 101660.	3.0	7
2	A phosphorescent OLED with an efficiency roll-off lower than 1% at 10 000 cd m ^{ⰲ2} achieved by reducing the carrier mobility of the donors in an exciplex co-host system. Journal of Materials Chemistry C, 2022, 10, 4955-4964.	5.5	10
3	Pico-molar level detection of copper ion with extraordinarily high response by Ti-doped copper nitride fabricated via high power impulse magnetron sputtering. Sensors and Actuators B: Chemical, 2022, 360, 131632.	7.8	3
4	A micro-cavity forming electrode with high thermal stability for semi-transparent colorful organic photovoltaics exceeding 13% power conversion efficiency. Nano Energy, 2021, 80, 105565.	16.0	25
5	Vacuumâ€Deposited Transparent Organic Photovoltaics for Efficiently Harvesting Selective Ultraviolet and Nearâ€Infrared Solar Energy. Solar Rrl, 2021, 5, 2000564.	5.8	11
6	The effect of ZnO preparation on the performance of inverted polymer solar cells under one sun and indoor light. Journal of Materials Chemistry C, 2021, 9, 1196-1204.	5.5	13
7	Vacuumâ€Deposited Transparent Organic Photovoltaics for Efficiently Harvesting Selective Ultraviolet and Nearâ€Infrared Solar Energy. Solar Rrl, 2021, 5, 2170032.	5.8	8
8	Efficient Plastic Recycling and Remolding Circular Economy Using the Technology of Trust–Blockchain. Sustainability, 2021, 13, 9142.	3.2	38
9	Transparent organic upconversion device targeting high- grade infrared visual image. Nano Energy, 2021, 86, 106043.	16.0	18
10	Structural effect of phenylcarbazole-based molecules on the exciplex-forming co-host system to achieve highly efficient phosphorescent OLEDs with low efficiency roll-off. Journal of Materials Chemistry C, 2021, 9, 9453-9464.	5.5	8
11	Resolving Cross-Sensitivity Effect in Fluorescence Quenching for Simultaneously Sensing Oxygen and Ammonia Concentrations by an Optical Dual Gas Sensor. Sensors, 2021, 21, 6940.	3.8	11
12	Transparent photodetectors with ultra-low dark current and high photoresponse for near-infrared detection. Organic Electronics, 2021, 99, 106356.	2.6	10
13	Gate Interface Engineering for Subvolt Metal Oxide Transistor Fabrication by Using Ion-Conducting Dielectric with Mn ₂ O ₃ Gate Interface. ACS Applied Electronic Materials, 2020, 2, 25-34.	4.3	26
14	Stable anatase phase with a bandgap in visible light region by a charge compensated Ga–V (1:1) co-doping in TiO2. Ceramics International, 2020, 46, 8958-8970.	4.8	7
15	Ultra-Low Voltage Metal Oxide Thin Film Transistor by Low-Temperature Annealed Solution Processed LiAlO2 Gate Dielectric. Electronic Materials Letters, 2020, 16, 22-34.	2.2	29
16	Scalable Synthesis of a Sub-10 nm Chalcopyrite (CuFeS ₂) Nanocrystal by the Microwave-Assisted Synthesis Technique and Its Application in a Heavy-Metal-Free Broad-Band Photodetector. ACS Omega, 2020, 5, 25947-25953.	3.5	15
17	Solution processed Cu2S/TiO2 heterojunction for visible-near infrared photodetector. Thin Solid Films, 2020, 710, 138275.	1.8	11
18	Dielectric/Semiconductor Interfacial pâ€Doping: A New Technique to Fabricate Solutionâ€Processed Highâ€Performance 1 V Ambipolar Oxide Transistors. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000268.	2.4	4

#	Article	IF	CITATIONS
19	Organic Photodetectors: Vacuumâ€Processed Small Molecule Organic Photodetectors with Low Dark Current Density and Strong Response to Nearâ€Infrared Wavelength (Advanced Optical Materials) Tj ETQq1 1 ().78 43 14 r	gB I /Overlo
20	Vacuumâ€Processed Small Molecule Organic Photodetectors with Low Dark Current Density and Strong Response to Nearâ€Infrared Wavelength. Advanced Optical Materials, 2020, 8, 2000519.	7.3	34
21	A Comparative Study via Photophysical and Electrical Characterizations on Interfacial and Bulk Exciplex-Forming Systems for Efficient Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 1011-1019.	4.3	34
22	Structural and optical properties of aliovalent vanadium substituted TiO2. AIP Conference Proceedings, 2019, , .	0.4	0
23	Structural, thermally stable dielectric, and energy storage properties of lead-free (1 â^` x)(Na0.50Bi0.50)TiO3 â^' xKSbO3 ceramics. Journal of Materials Science: Materials in El 30, 15005-15017.	ect മമ ics,	20 19 ,
24	Role of Electron Donation of TiO ₂ Gate Interface for Developing Solution-Processed High-Performance One-Volt Metal-Oxide Thin-Film Transistor Using Ion-Conducting Gate Dielectric. Journal of Physical Chemistry C, 2019, 123, 20278-20286.	3.1	25
25	A Colorful Organic Photovoltaic Devices with a 5.48 % Power Conversion Efficiency. , 2019, , .		2
26	Role of Ga-substitution in ZnO on defect states, carrier density, mobility and UV sensing. Journal of Materials Science: Materials in Electronics, 2019, 30, 18686-18695.	2.2	12
27	Effect of Annealing on Structure, Optoelectronic and Photoresponsivity Properties of Sol-gel Prepared ZnO Nanoparticles. Materials Today: Proceedings, 2019, 17, 261-265.	1.8	5
28	Reconciling the value of Schottky barriers in small molecular organic photovoltaics from J-V and C-V measurements at low temperatures towards the estimation of open circuit voltage at $0\hat{a} \in K$. Organic Electronics, 2019, 73, 166-171.	2.6	3
29	Influence of Cation Order and Valence States on Magnetic Ordering in La ₂ Ni _{1â^²<i>x</i>} Mn _{1+<i>x</i>} O ₆ . Physica Status Solidi (B): Basic Research, 2019, 256, 1900019.	1.5	15
30	Nanoplatform based on ideally ordered arrays of short straight and long beer bottle-shaped nanochannels. Microporous and Mesoporous Materials, 2019, 287, 71-76.	4.4	13
31	Selective near-infrared (NIR) photodetectors fabricated with colloidal CdS:Co quantum dots. Journal of Materials Chemistry C, 2019, 7, 7725-7733.	5.5	36
32	Structure, dielectric, and optical properties of PbTi(1â^'x)(V0.50Fe0.50)xO3 perovskite ceramics. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	2
33	The effect of high temperature annealing on the antisite defects in ferromagnetic La2NiMnO6 double perovskite. Journal of Magnetism and Magnetic Materials, 2019, 483, 114-123.	2.3	24
34	Enhanced energy storage properties in A-site substituted Na0.5Bi0.5TiO3 ceramics. Journal of Alloys and Compounds, 2019, 792, 95-107.	5.5	29
35	Multicomponent Zn(1-)Fe0.8Na0.2O semiconductors: Effect of dopant concentration and ionic radius on structural, opto-electronics, magnetic and sensing properties. Materials Science in Semiconductor Processing, 2019, 98, 121-130.	4.0	4
36	Structural, opto-electronics and magnetic study of Fe/Si doped ZnO. Journal of Materials Science: Materials in Electronics, 2019, 30, 9344-9355.	2.2	0

#	Article	IF	Citations
37	Optoelectronic properties of Cu3N thin films deposited by reactive magnetron sputtering and its diode rectification characteristics. Journal of Alloys and Compounds, 2019, 789, 428-434.	5.5	29
38	Improvement of energy storage properties with the reduction of depolarization temperature in lead-free (1 – <i>x</i>)Na0.5Bi0.5TiO3- <i>x</i> AgTaO3 ceramics. Journal of Applied Physics, 2019, 1	25, ^{2.5}	19
39	An Effective Optical Dual Gas Sensor for Simultaneous Detection of Oxygen and Ammonia. Sensors, 2019, 19, 5124.	3.8	24
40	Role of Li+ and Fe3+ in modified ZnO: Structural, vibrational, opto-electronic, mechanical and magnetic properties. Ceramics International, 2019, 45, 7232-7243.	4.8	9
41	Oxygen and cerium defects mediated changes in structural, optical and photoluminescence properties of Ni substituted CeO2. Journal of Alloys and Compounds, 2019, 782, 689-698.	5.5	44
42	Reduction of dark current density in organic ultraviolet photodetector by utilizing an electron blocking layer of TAPC doped with MoO3. Organic Electronics, 2019, 65, 150-155.	2.6	25
43	Role of oxygen vacancies in Co/Ni Substituted CeO2: A comparative study. Ceramics International, 2019, 45, 3823-3832.	4.8	13
44	Role of Antisite Disorder, Rare-Earth Size, and Superexchange Angle on Band Gap, Curie Temperature, and Magnetization of R ₂ NiMnO ₆ Double Perovskites. ACS Applied Electronic Materials, 2019, 1, 141-153.	4.3	82
45	Solution processed low band gap ion-conducting gate dielectric for low voltage metal oxide transistor. Journal of Alloys and Compounds, 2019, 777, 1124-1132.	5 . 5	25
46	Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Diodes. Diodes. ACS Applied Materials & Diodes. D	8.0	66
47	Investigation of <i>La</i> and <i>Al</i> substitution on the spontaneous polarization and lattice dynamics of the Pb(1- <i>x</i>)La <i>x</i> Ti(1- <i>x</i>)Al <i>x</i> O3 ceramics. Journal of Applied Physics, 2018, 123, .	2.5	27
48	Vanadium substitution: A simple and economic way to improve UV sensing in ZnO. Journal of Applied Physics, 2018, 123, .	2.5	17
49	Solution processed Li ₅ AlO ₄ dielectric for low voltage transistor fabrication and its application in metal oxide/quantum dot heterojunction phototransistors. Journal of Materials Chemistry C, 2018, 6, 790-798.	5.5	30
50	Fluorination effects of A-D-A-type small molecules on physical property and the performance of organic solar cell. Organic Electronics, 2018, 52, 342-349.	2.6	18
51	Microwave-Polyol Synthesis of Sub-10-nm PbS Nanocrystals for Metal Oxide/Nanocrystal Heterojunction Photodetectors. ACS Applied Nano Materials, 2018, 1, 6063-6072.	5.0	11
52	Stabilization of anatase phase by uncompensated Ga-VÂco-doping in TiO2: A structural phase transition, grain growth and optical property study. Ceramics International, 2018, 44, 22445-22455.	4.8	11
53	Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes. Organic Electronics, 2018, 59, 266-271.	2.6	32
54	84â€4: <i>Invited Paper:</i> Nearâ€Infrared Organic Upconversion Device with High Image Sensing Quality. Digest of Technical Papers SID International Symposium, 2018, 49, 1147-1150.	0.3	1

#	Article	IF	CITATIONS
55	Versatile Exciplex-Forming Co-Host for Improving Efficiency and Lifetime of Fluorescent and Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24090-24098.	8.0	55
56	A Sequence-Dependent DNA Condensation Induced by Prion Protein. Journal of Nucleic Acids, 2018, 2018, 1-14.	1.2	3
57	Role of oxygen vacancies and interstitials on structural phase transition, grain growth, and optical properties of Ga doped TiO2. Journal of Applied Physics, 2018, 123, 245702.	2.5	26
58	(Pb1-Bi)(Ti1-Mn)O3: Competing mechanism of tetragonal-cubic phase on A/B site modifications. Journal of Alloys and Compounds, 2018, 765, 278-286.	5.5	9
59	Structural, optical and mechanical properties of sol-gel synthesized Mn-doped CeO2. Superlattices and Microstructures, 2018, 122, 316-323.	3.1	12
60	Structural, dielectric and ferroelectric studies of thermally stable and efficient energy storage ceramic materials: (Na0.5-K Bi0.5-La)TiO3. Ceramics International, 2018, 44, 20178-20186.	4.8	21
61	Effect of ionic size compensation by Ag+ incorporation in homogeneous Fe-substituted ZnO: studies on structural, mechanical, optical, and magnetic properties. RSC Advances, 2018, 8, 24355-24369.	3.6	14
62	A quantitative characterization of interaction between prion protein with nucleic acids. Biochemistry and Biophysics Reports, 2018, 14, 114-124.	1.3	8
63	Effect of defect states and oxygen vacancies on optical transitions due to Co2+ substitution in CeO2. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	11
64	Comparative studies on the properties of magnetron sputtered transparent conductive oxide thin films for the application in solar cell. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	6
65	Increase in depolarization temperature and improvement in ferroelectric properties by V5+ doping in lead-free 0.94(Na0.50Bi0.50)TiO3-0.06BaTiO3 ceramics. Journal of Applied Physics, 2018, 123, .	2.5	27
66	Structural distortion, ferroelectricity and ferromagnetism in Pb(Tilâ^Fe)O3. Journal of Alloys and Compounds, 2017, 701, 619-625.	5.5	23
67	Zn 1â^'x Si x O: Improved optical transmission and electrical conductivity. Ceramics International, 2017, 43, 5668-5673.	4.8	12
68	Structural and dielectric properties of Pb($1\hat{a}^*x$)(Na0.5Sm0.5) x TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 10730-10738.	2.2	13
69	Carbazole-based small molecules for vacuum-deposited organic photovoltaic devices with open-circuit voltage exceeding 1ÅV . Organic Electronics, 2017, 47, 162-173.	2.6	13
70	Highly efficient ITO-free organic light-emitting diodes employing a roughened ultra-thin silver electrode. Organic Electronics, 2017, 42, 52-58.	2.6	22
71	Highly efficient exciplex organic light-emitting devices employing a sputtered indium-tin oxide electrode with nano-pinhole morphology. Journal of Materials Chemistry C, 2017, 5, 12050-12056.	5.5	15
72	Size and strain dependent anatase to rutile phase transition in TiO2 due to Si incorporation. Journal of Materials Science: Materials in Electronics, 2017, 28, 19017-19024.	2.2	12

#	Article	IF	CITATION
73	Cu _{1– <i>x</i>} Fe <i> _x </i> O: hopping transport and ferromagnetism. Royal Society Open Science, 2017, 4, 170339.	2.4	7
74	Anatase to rutile phase transition promoted by vanadium substitution in TiO2: A structural, vibrational and optoelectronic study. Ceramics International, 2017, 43, 14128-14134.	4.8	51
75	Opto-electronic properties of Zn(1-x)VxO: Green emission enhancement due to V4+state. Journal of Applied Physics, 2017, 122, 025106.	2.5	7
76	Structural and ferroelectric properties of perovskite Pb _(1â^'x) (K _{0.5} Sm _{0.5}) _x TiO ₃ ceramics. RSC Advances, 2017, 7, 39434-39442.	3.6	32
77	Role of compensating Li/Fe incorporation in Cu _{0.945} Fe _{0.055â°x} Li _x O: structural, vibrational and magnetic properties. RSC Advances, 2017, 7, 31970-31979.	3.6	18
78	The effect of gate dielectric deposition at different vacuum conditions on the field-effect mobility of pentacene based organic field effect transistors. Thin Solid Films, 2017, 636, 485-489.	1.8	6
79	Tuning of particle plasmon resonances in binary dielectric medium. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 376, 125-127.	2.1	2
80	Light scattering from 2D arrays of monodispersed Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling. Optics Express, 2008, 16, 15312.	3.4	32
81	High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication. Nanotechnology, 2008, 19, 355302.	2.6	7