
Lichun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4521881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. Journal of Materials Chemistry, 2011, 21, 5972.	6.7	290
2	Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Analytical Methods, 2012, 4, 3261.	2.7	194
3	Amino-Functionalized Metal-Organic Frameworks Nanoplates-Based Energy Transfer Probe for Highly Selective Fluorescence Detection of Free Chlorine. Analytical Chemistry, 2016, 88, 3413-3420.	6.5	134
4	Novel Mn ₃ O ₄ Micro-octahedra: Promising Cataluminescence Sensing Material for Acetone. Chemistry of Materials, 2009, 21, 5066-5071.	6.7	127
5	Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta, 2013, 107, 133-139.	5.5	118
6	Colorimetric detection of glutathione in human blood serum based on the reduction of oxidized TMB. New Journal of Chemistry, 2013, 37, 2174.	2.8	97
7	Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sensors and Actuators B: Chemical, 2015, 211, 370-376.	7.8	89
8	Dielectric barrier discharge plasma-assisted fabrication of g-C 3 N 4 -Mn 3 O 4 composite for high-performance cataluminescence H 2 S gas sensor. Sensors and Actuators B: Chemical, 2017, 239, 1177-1184.	7.8	78
9	A green solid-phase method for preparation of carbon nitride quantum dots and their applications in chemiluminescent dopamine sensing. RSC Advances, 2015, 5, 55158-55164.	3.6	66
10	Quantum dotsâ€based chemiluminescence probes: an overview. Luminescence, 2019, 34, 530-543.	2.9	62
11	MOFs-derived dodecahedra porous Co3O4: An efficient cataluminescence sensing material for H2S. Sensors and Actuators B: Chemical, 2018, 258, 349-357.	7.8	61
12	Advances in nanomaterial-assisted cataluminescence and its sensing applications. TrAC - Trends in Analytical Chemistry, 2015, 67, 107-127.	11.4	53
13	Novel metal-organic frameworks-based hydrogen sulfide cataluminescence sensors. Sensors and Actuators B: Chemical, 2015, 220, 614-621.	7.8	53
14	Camellia-like NiO: A novel cataluminescence sensing material for H2S. Sensors and Actuators B: Chemical, 2019, 288, 243-250.	7.8	48
15	Novel Strategy for Engineering the Metal-Oxide@MOF Core@Shell Architecture and Its Applications in Cataluminescence Sensing. ACS Applied Materials & Interfaces, 2021, 13, 3471-3480.	8.0	47
16	A Y-doped metal-organic framework-based cataluminescence gas sensor for isobutanol. Sensors and Actuators B: Chemical, 2014, 201, 413-419.	7.8	43
17	Stable and Waterâ€Dispersible Graphene Nanosheets: Sustainable Preparation, Functionalization, and Highâ€Performance Adsorbents for Pb ²⁺ . ChemPlusChem, 2012, 77, 379-386.	2.8	42
18	One-step facile synthesis of coral-like Zn-doped SnO ₂ and its cataluminescence sensing of 2-butanone. Journal of Materials Chemistry A, 2015, 3, 7132-7138.	10.3	41

LICHUN ZHANG

#	Article	IF	CITATIONS
19	Transient Cataluminescence on Flowerlike MgO for Discrimination and Detection of Volatile Organic Compounds. Analytical Chemistry, 2016, 88, 8137-8144.	6.5	40
20	Metal-Free Cataluminescence Gas Sensor for Hydrogen Sulfide Based on Its Catalytic Oxidation on Silicon Carbide Nanocages. Analytical Chemistry, 2017, 89, 13666-13672.	6.5	40
21	Enclosed hollow tubular ZnO: Controllable synthesis and their high performance cataluminescence gas sensing of H2S. Sensors and Actuators B: Chemical, 2017, 242, 1086-1094.	7.8	40
22	An ethanol gas sensor using energy transfer cataluminescence on nanosized YVO4:Eu3+ surface. Sensors and Actuators B: Chemical, 2010, 144, 192-197.	7.8	37
23	Highly efficient cataluminescence gas sensor for acetone vapor based on UIO-66 metal-organic frameworks as preconcentrator. Sensors and Actuators B: Chemical, 2020, 312, 127952.	7.8	37
24	Hierarchical hollow microsphere and flower-like indium oxide: Controllable synthesis and application as H2S cataluminescence sensing materials. Materials Research Bulletin, 2012, 47, 2212-2218.	5.2	35
25	A Two-Photon Excited Near-Infrared Iridium(III) Complex for Multi-signal Detection and Multimodal Imaging of Hypochlorite. Analytical Chemistry, 2021, 93, 4628-4634.	6.5	34
26	A cataluminescence gas sensor based on nanosized V2O5 for tert-butyl mercaptan. Talanta, 2010, 82, 733-738.	5.5	33
27	Recent advances in ratiometric luminescence sensors. Applied Spectroscopy Reviews, 2021, 56, 324-345.	6.7	33
28	Recent Progress in Chemiluminescence for Gas Analysis. Applied Spectroscopy Reviews, 2010, 45, 474-489.	6.7	31
29	Controllable Synthesis of Y ₂ O ₃ Microstructures for Application in Cataluminescence Gas Sensing. Chemistry - A European Journal, 2011, 17, 7105-7111.	3.3	31
30	UV-Assisted Cataluminescent Sensor for Carbon Monoxide Based on Oxygen-Functionalized g-C ₃ N ₄ Nanomaterials. Analytical Chemistry, 2018, 90, 9598-9605.	6.5	31
31	Ratiometric Cataluminescence for Rapid Recognition of Volatile Organic Compounds Based on Energy Transfer Process. Analytical Chemistry, 2019, 91, 4860-4867.	6.5	31
32	Recent advances in cataluminescence gas sensor: Materials and methodologies. Applied Spectroscopy Reviews, 2019, 54, 306-324.	6.7	31
33	Uricase-Based Highly Sensitive and Selective Spectrophotometric Determination of Uric Acid Using BSA-Stabilized Au Nanoclusters as Artificial Enzyme. Spectroscopy Letters, 2012, 45, 511-519.	1.0	30
34	Synthesis of Ag2Se nanomaterial by electrodeposition and its application as cataluminescence gas sensor material for carbon tetrachloride. Sensors and Actuators B: Chemical, 2011, 155, 311-316.	7.8	29
35	Hierarchical SnO2 architectures: controllable growth on graphene by atmospheric pressure chemical vapour deposition and application in cataluminescence gas sensor. CrystEngComm, 2014, 16, 3331.	2.6	27
36	Raspberry-Like Mesoporous Zn _{1.07} Ga _{2.34} Si _{0.98} O _{6.56} :Cr _{0.01} Nanocarriers for Enhanced Near-Infrared Afterglow Imaging and Combined Cancer Chemotherapy. ACS Applied Materials & Interfaces, 2019, 11, 44978-44988.	8.0	26

LICHUN ZHANG

#	Article	IF	CITATIONS
37	Ratiometric Cataluminescence Sensor of Amine Vapors for Discriminating Meat Spoilage. Analytical Chemistry, 2021, 93, 6692-6697.	6.5	26
38	Controllable deposition of ZnO-doped SnO2 nanowires on Au/graphene and their application in cataluminescence sensing for alcohols and ketones. Sensors and Actuators B: Chemical, 2014, 203, 726-735.	7.8	24
39	Modulating near-infrared persistent luminescence of core-shell nanoplatform for imaging of glutathione in tumor mouse model. Biosensors and Bioelectronics, 2019, 144, 111671.	10.1	24
40	LRET-based functional persistent luminescence nanoprobe for imaging and detection of cyanide ion. Sensors and Actuators B: Chemical, 2019, 279, 189-196.	7.8	24
41	Recent advances in methodologies and applications of cataluminescence sensing. Luminescence, 2020, 35, 1174-1184.	2.9	24
42	Controllable synthesis, characterization, and electrochemical properties of manganese oxide nanoarchitectures. Journal of Materials Research, 2008, 23, 780-789.	2.6	22
43	Enhanced cataluminescence sensing characteristics of ethanol on hierarchical spheres ZnO. Sensors and Actuators B: Chemical, 2012, 173, 93-99.	7.8	19
44	Recent Advances in Graphitic Carbon Nitride-Based Chemiluminescence, Cataluminescence and Electrochemiluminescence. Journal of Analysis and Testing, 2017, 1, 274-290.	5.1	18
45	Green synthesis of fluorescence carbon nanoparticles from yum and application in sensitive and selective detection of ATP. Luminescence, 2016, 31, 626-632.	2.9	17
46	Cataluminescence gas sensor for ketones based on nanosized NaYF4:Er. Sensors and Actuators B: Chemical, 2016, 222, 300-306.	7.8	17
47	Development of iridium(III) phosphorescent probe for hypochlorous acid detection in macrophages cells and cancer cells co-culture system and application in inflamed mouse model. Sensors and Actuators B: Chemical, 2020, 303, 127016.	7.8	17
48	Fluorine functionalized graphitic carbon nitride for cataluminescence sensing of H2S. Sensors and Actuators B: Chemical, 2021, 339, 129855.	7.8	17
49	Fluorescence nano metal organic frameworks modulated by encapsulation for construction of versatile biosensor. Talanta, 2019, 201, 96-103.	5.5	16
50	A cataluminescence gas sensor based on mesoporous Mg-doped SnO ₂ structures for detection of gaseous acetone. Analytical Methods, 2016, 8, 7816-7823.	2.7	15
51	A persistent luminescence microsphere-based probe for convenient imaging analysis of dopamine. Analyst, The, 2016, 141, 5366-5373.	3.5	15
52	Fabrication of fluorescent nitrogen-rich graphene quantum dots by tin(<scp>iv</scp>) catalytic carbonization of ethanolamine. RSC Advances, 2015, 5, 60085-60089.	3.6	14
53	Cataluminescence on 2D WS2 nanosheets surface for H2S sensing. Sensors and Actuators B: Chemical, 2022, 353, 131111.	7.8	13
54	Online evaluation of the catalytic performance of MnO2 and its application in H2S cataluminescence sensing. Analytica Chimica Acta, 2021, 1180, 338883.	5.4	12

LICHUN ZHANG

#	Article	IF	CITATIONS
55	Ozone-inducted ratiometric cataluminescence for aromatic compounds discrimination based on Eu,Tb co-doped MgO. Sensors and Actuators B: Chemical, 2021, 327, 128939.	7.8	11
56	A novel Ce(IV)-MOF-based cataluminescence sensor for detection of hydrogen sulfide. Sensors and Actuators B: Chemical, 2022, 362, 131746.	7.8	10
57	Efficient Photoinduced Thermocatalytic Chemiluminescence System Based on the Z-Scheme Heterojunction Ag ₃ PO ₄ /Ag/Bi ₄ Ti ₃ O ₁₂ H ₂ S Sensing. Analytical Chemistry, 2022, 94, 9415-9423.	6.5	10
58	ZnO Nanoparticle-Decorated CeO ₂ Nanospheres for Cataluminescence Sensing of H ₂ S. ACS Applied Nano Materials, 2021, 4, 9557-9565.	5.0	9
59	Discrimination and Detection of Oxygenated Volatile Organic Compounds Utilizing Energy Transfer Cataluminescence of La2O2CO3:Eu3+. Sensors and Actuators B: Chemical, 2020, 316, 128069.	7.8	8
60	A novel H2S cataluminescence sensor based on ZnMn2O4 nanoparticles. Microchemical Journal, 2022, 172, 106990.	4.5	8
61	Evaluating the Band Gaps of Semiconductors by Cataluminescence. Analytical Chemistry, 2021, 93, 14454-14461.	6.5	6
62	Metabolomics and Transcriptomics Integration of Early Response of Populus tomentosa to Reduced Nitrogen Availability. Frontiers in Plant Science, 2021, 12, 769748.	3.6	6
63	Recent advances in chemiluminescence and cataluminescence for the detection of volatile sulfur compounds. Applied Spectroscopy Reviews, 2023, 58, 401-427.	6.7	5
64	Ozone-Activated Cataluminescence Sensor System for Dichloroalkanes Based on Silica Nanospheres. ACS Sensors, 2021, 6, 2893-2901.	7.8	4
65	Feâ€doped MOFâ€derived Nâ€rich porous carbon nanoframe for H ₂ S cataluminescence sensing. Luminescence. 2022	2.9	3