
Radha Raman Pandey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4521213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The XRN1-regulated RNA helicase activity of YTHDC2 ensures mouse fertility independently of m6A recognition. Molecular Cell, 2022, 82, 1678-1690.e12.	4.5	31
2	Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell, 2021, 184, 3125-3142.e25.	13.5	103
3	The Mammalian Cap-Specific m6Am RNA Methyltransferase PCIF1 Regulates Transcript Levels in Mouse Tissues. Cell Reports, 2020, 32, 108038.	2.9	50
4	TEX15 associates with MILI and silences transposable elements in male germ cells. Genes and Development, 2020, 34, 745-750.	2.7	33
5	Counting the Cuts: MAZTER-Seq Quantifies m6A Levels Using a Methylation-Sensitive Ribonuclease. Cell, 2019, 178, 515-517.	13.5	17
6	Exonuclease Domain-Containing 1 Enhances MIWI2 piRNA Biogenesis via Its Interaction with TDRD12. Cell Reports, 2018, 24, 3423-3432.e4.	2.9	17
7	Methylation of Structured RNA by the m6A Writer METTL16 Is Essential for Mouse Embryonic Development. Molecular Cell, 2018, 71, 986-1000.e11.	4.5	250
8	Distinct Roles of RNA Helicases MVH and TDRD9 in PIWI Slicing-Triggered Mammalian piRNA Biogenesis and Function. Developmental Cell, 2017, 41, 623-637.e9.	3.1	65
9	Regulation of m6A Transcripts by the 3ʹ→5ʹ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Molecular Cell, 2017, 68, 374-387.e12.	4.5	370
10	Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries. PLoS Genetics, 2017, 13, e1006956.	1.5	57
11	Mutations in the MOV10L1 ATP Hydrolysis Motif Cause piRNA Biogenesis Failure and Male Sterility in Mice. Biology of Reproduction, 2016, 95, 103-103.	1.2	23
12	PIWI Slicing and EXD1 Drive Biogenesis of Nuclear piRNAs from Cytosolic Targets of the Mouse piRNA Pathway. Molecular Cell, 2016, 61, 138-152.	4.5	63
13	PIWI Slicing and RNA Elements in Precursors Instruct Directional Primary piRNA Biogenesis. Cell Reports, 2015, 12, 418-428.	2.9	113
14	Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active in protists. Rna, 2015, 21, 833-839.	1.6	26
15	The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs. Rna, 2014, 20, 773-781.	1.6	75
16	Primary pi RNA biogenesis: caught up in a Maelstrom. EMBO Journal, 2014, 33, 1979-1980.	3.5	11
17	Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16492-16497.	3.3	81
18	Transcriptional and Posttranscriptional Programming by Long Noncoding RNAs. Progress in Molecular and Subcellular Biology, 2011, 51, 1-27.	0.9	30

2

#	Article	IF	CITATIONS
19	Kcnq1ot1 Antisense Noncoding RNA Mediates Lineage-Specific Transcriptional Silencing through Chromatin-Level Regulation. Molecular Cell, 2008, 32, 232-246.	4.5	1,114
20	<i>Kcnq1ot1</i> / <i>Lit1</i> Noncoding RNA Mediates Transcriptional Silencing by Targeting to the Perinucleolar Region. Molecular and Cellular Biology, 2008, 28, 3713-3728.	1.1	132
21	The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. EMBO Journal, 2006, 25, 2096-2106.	3.5	70
22	NF-Y Regulates the Antisense Promoter, Bidirectional Silencing, and Differential Epigenetic Marks of the Kcnq1 Imprinting Control Region. Journal of Biological Chemistry, 2004, 279, 52685-52693.	1.6	25
23	An Antisense RNA Regulates the Bidirectional Silencing Property of the Kcnq1 Imprinting Control Region. Molecular and Cellular Biology, 2004, 24, 7855-7862.	1.1	143