Changbao Zhu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4520693/changbao-zhu-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 5,473 28 45 g-index

45 6,112 13.6 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
42	Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2152-6	16.4	777
41	Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. <i>Advanced Materials</i> , 2010 , 22, 2247-50	24	518
40	Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. <i>Nano Letters</i> , 2014 , 14, 2175-80	11.5	392
39	Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15984-5	16.4	377
38	Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1700431	24	346
37	Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6278-82	16.4	211
36	Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4661-3	16.4	200
35	A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 14669-74	3.6	197
34	The nanoscale circuitry of battery electrodes. <i>Science</i> , 2017 , 358,	33.3	184
33	Li storage in 3D nanoporous Au-supported nanocrystalline tin. Advanced Materials, 2011, 23, 2443-7	24	183
32	High Power-High Energy Sodium Battery Based on Threefold Interpenetrating Network. <i>Advanced Materials</i> , 2016 , 28, 2409-16	24	182
31	Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. <i>ACS Nano</i> , 2014 , 8, 7051-9	16.7	177
30	Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 3012-3020	20.1	164
29	A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries. <i>Advanced Science</i> , 2015 , 2, 1500200	13.6	158
28	Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. <i>Electrochimica Acta</i> , 2007 , 52, 5789-5794	6.7	149
27	Fast Li Storage in MoS2-Graphene-Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures. <i>Advanced Energy Materials</i> , 2015 , 5, 1401170	21.8	142
26	Single-Layered Ultrasmall Nanoplates of MoS2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage. <i>Angewandte Chemie</i> , 2014 , 126, 2184-2	188 ⁶	138

(2007-2015)

25	High Lithium Storage Performance of FeS Nanodots in Porous Graphitic Carbon Nanowires. <i>Advanced Functional Materials</i> , 2015 , 25, 2335-2342	15.6	130
24	A High Power⊞igh Energy Na3V2(PO4)2F3 Sodium Cathode: Investigation of Transport Parameters, Rational Design and Realization. <i>Chemistry of Materials</i> , 2017 , 29, 5207-5215	9.6	109
23	Niobium-Based Oxides Toward Advanced Electrochemical Energy Storage: Recent Advances and Challenges. <i>Small</i> , 2019 , 15, e1804884	11	86
22	Phase boundary propagation in large LiFePO4 single crystals on delithiation. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2988-92	16.4	78
21	Electrochemical Characterization of Two Types of PEO-Based Polymer Electrolytes with Room-Temperature Ionic Liquids. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A569	3.9	70
20	Engineering nanostructured electrode materials for high performance sodium ion batteries: a case study of a 3D porous interconnected WS2/C nanocomposite. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20487-20493	13	64
19	Size-Dependent Staging and Phase Transition in LiFePO4/FePO4. <i>Advanced Functional Materials</i> , 2014 , 24, 312-318	15.6	45
18	Advantageous Functional Integration of Adsorption-Intercalation-Conversion Hybrid Mechanisms in 3D Flexible Nb2O5@Hard Carbon@MoS2@Soft Carbon Fiber Paper Anodes for Ultrafast and Super-Stable Sodium Storage. <i>Advanced Functional Materials</i> , 2020 , 30, 1908665	15.6	43
17	Interfaces in Garnet-Based All-Solid-State Lithium Batteries. Advanced Energy Materials, 2020, 10, 2001	1 318 .8	37
16	Toward High Power-High Energy Sodium Cathodes: A Case Study of Bicontinuous Ordered Network of 3D Porous Na (VO) (PO) F/rGO with Pseudocapacitance Effect. <i>Small</i> , 2019 , 15, e1900356	11	34
15	Designed Nanoarchitectures by Electrostatic Spray Deposition for Energy Storage. <i>Advanced Materials</i> , 2019 , 31, e1803408	24	29
14	Advanced Post-Potassium-Ion Batteries as Emerging Potassium-Based Alternatives for Energy Storage. <i>Advanced Functional Materials</i> , 2020 , 30, 2005209	15.6	28
13	Lithium potential variations for metastable materials: case study of nanocrystalline and amorphous LiFePO4. <i>Nano Letters</i> , 2014 , 14, 5342-9	11.5	27
12	A novel hybrid artificial photosynthesis system using MoS2 embedded in carbon nanofibers as electron relay and hydrogen evolution catalyst. <i>Journal of Catalysis</i> , 2017 , 352, 35-41	7.3	27
11	Electronic Conductivity and Defect Chemistry of Heterosite FePO4. <i>Advanced Functional Materials</i> , 2011 , 21, 1917-1921	15.6	26
10	Electrospinning of Highly Electroactive Carbon-Coated Single-Crystalline LiFePO4 Nanowires. <i>Angewandte Chemie</i> , 2011 , 123, 6402-6406	3.6	24
9	Spectroscopic and electrochemical characterization of the passive layer formed on lithium in gel polymer electrolytes containing propylene carbonate. <i>Journal of Power Sources</i> , 2007 , 173, 531-537	8.9	23
8	In situ micro-FTIR study of the solidBolid interface between lithium electrode and polymer electrolytes. <i>Journal of Power Sources</i> , 2007 , 174, 1027-1031	8.9	20

7	Direct Imaging of Lithium Ions Using Aberration-Corrected Annular-Bright-Field Scanning Transmission Electron Microscopy and Associated Contrast Mechanisms. <i>Materials Express</i> , 2011 , 1, 43-5	5 0 ·3	18
6	Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. <i>Journal of Energy Chemistry</i> , 2022 , 64, 246-262	12	18
5	Transformation of Polyoxometalate into 3D Porous Li-Containing Oxide: A Case Study of ŁiV2O5 for High-Performance Cathodes of Li-Ion Batteries. <i>Small Methods</i> , 2019 , 3, 1900187	12.8	12
4	Bicontinuous transition metal phosphides/rGO binder-free electrodes: generalized synthesis and excellent cycling stability for sodium storage. <i>Nanoscale</i> , 2020 , 12, 16716-16723	7.7	10
3	Kinetics of lithium dendrite growth in garnet-type solid electrolyte. <i>Journal of Power Sources</i> , 2021 , 487, 229421	8.9	8
2	Size Effects in Sodium Ion Batteries. Advanced Functional Materials, 2021 , 2106047	15.6	7
1	Low-Temperature Synthesis of Amorphous FePO@rGO Composites for Cost-Effective Sodium-Ion Batteries. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	4