Peng-zhi Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4520095/publications.pdf

Version: 2024-02-01

		14/366	98622	
98	4,695	31	67	
papers	citations	h-index	g-index	
				ı
103	103	103	1937	
all docs	docs citations	times ranked	citing authors	
				41

#	Article	IF	CITATIONS
1	A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, 1998, 359, 239-264.	1.4	710
2	Numerical Modeling of Wave Interaction with Porous Structures. Journal of Waterway, Port, Coastal and Ocean Engineering, 1999, 125, 322-330.	0.5	318
3	A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics, 2008, 227, 3921-3939.	1.9	286
4	Internal Wave-Maker for Navier-Stokes Equations Models. Journal of Waterway, Port, Coastal and Ocean Engineering, 1999, 125, 207-215.	0.5	243
5	Three-dimensional liquid sloshing in a tank with baffles. Ocean Engineering, 2009, 36, 202-212.	1.9	201
6	Particle methods in ocean and coastal engineering. Applied Ocean Research, 2021, 114, 102734.	1.8	174
7	A ?-coordinate three-dimensional numerical model for surface wave propagation. International Journal for Numerical Methods in Fluids, 2002, 38, 1045-1068.	0.9	163
8	Experimental study on vertical baffles of different configurations in suppressing sloshing pressure. Ocean Engineering, 2017, 136, 178-189.	1.9	152
9	Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. Journal of Geophysical Research, 1998, 103, 15677-15694.	3.3	146
10	Numerical study of ring baffle effects on reducing violent liquid sloshing. Computers and Fluids, 2011, 52, 116-129.	1.3	127
11	A fixed-grid model for simulation of a moving body in free surface flows. Computers and Fluids, 2007, 36, 549-561.	1.3	114
12	Runup and Rundown of Solitary Waves on Sloping Beaches. Journal of Waterway, Port, Coastal and Ocean Engineering, 1999, 125, 247-255.	0.5	112
13	A numerical study of solitary wave interaction with rectangular obstacles. Coastal Engineering, 2004, 51, 35-51.	1.7	105
14	An improved incompressible SPH model for simulation of wave–structure interaction. Computers and Fluids, 2013, 71, 113-123.	1.3	85
15	An ISPH simulation of coupled structure interaction with free surface flows. Journal of Fluids and Structures, 2014, 48, 46-61.	1.5	80
16	Numerical study of combined overflow and wave overtopping over a smooth impermeable seawall. Coastal Engineering, 2008, 55, 155-166.	1.7	72
17	Calculation of hydrodynamic forces acting on a submerged moving object using immersed boundary method. Computers and Fluids, 2009, 38, 691-702.	1.3	68
18	Effects of perforated baffle on reducing sloshing in rectangular tank: Experimental and numerical study. China Ocean Engineering, 2013, 27, 615-628.	0.6	68

#	Article	IF	Citations
19	Numerical Study of Solitary Wave Interaction with Porous Breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering, 2007, 133, 352-363.	0.5	67
20	An experimental investigation of vortex-induced vibration of a curved flexible pipe in shear flows. Ocean Engineering, 2016, 121, 62-75.	1.9	53
21	A multiple-layer σ-coordinate model for simulation of wave–structure interaction. Computers and Fluids, 2006, 35, 147-167.	1.3	52
22	Generation of 3D regular and irregular waves using Navier–Stokes equations model with an internal wave maker. Coastal Engineering, 2013, 76, 55-67.	1.7	52
23	Wave–current interaction with a vertical square cylinder. Ocean Engineering, 2003, 30, 855-876.	1.9	51
24	An analytical solution of the mild-slope equation for waves around a circular island on a paraboloidal shoal. Coastal Engineering, 2004, 51, 421-437.	1.7	49
25	ISPH wave simulation by using an internal wave maker. Coastal Engineering, 2015, 95, 160-170.	1.7	48
26	Analytical Solution for Long-Wave Reflection by a Rectangular Obstacle with Two Scour Trenches. Journal of Engineering Mechanics - ASCE, 2011, 137, 919-930.	1.6	43
27	NEWFLUME: a numerical water flume for two-dimensional turbulent free surface flows. Journal of Hydraulic Research/De Recherches Hydrauliques, 2006, 44, 79-93.	0.7	39
28	Vortex-induced vibration and mode transition of a curved flexible free-hanging cylinder in exponential shear flows. Journal of Fluids and Structures, 2019, 84, 56-76.	1.5	39
29	Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset. Energy, 2021, 224, 120225.	4.5	39
30	Analytical study of Bragg resonance by singly periodic sinusoidal ripples based on the modified mild-slope equation. Coastal Engineering, 2019, 150, 121-134.	1.7	34
31	Consistent Particle Method simulation of solitary wave impinging on and overtopping a seawall. Engineering Analysis With Boundary Elements, 2019, 103, 160-171.	2.0	33
32	Discussion of "Vertical variation of the flow across the surf zone―[Coast. Eng. 45 (2002) 169–198]. Coastal Engineering, 2004, 50, 161-164.	1.7	32
33	Three-dimensional numerical simulation of solitary wave run-up using the IB method. Coastal Engineering, 2014, 84, 38-55.	1.7	29
34	Wave Attenuation by Spartina alterniflora under Macro-Tidal and Storm Surge Conditions. Wetlands, 2020, 40, 2151-2162.	0.7	28
35	Analytical Solution for Long-Wave Reflection by a General Breakwater or Trench with Curvilinear Slopes. Journal of Engineering Mechanics - ASCE, 2013, 139, 229-245.	1.6	27
36	Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles. Journal of Applied Mathematics, 2012, 2012, 1-21.	0.4	25

#	Article	IF	Citations
37	Viscous effects on liquid sloshing under external excitations. Ocean Engineering, 2019, 171, 695-707.	1.9	25
38	A numerical study of three-dimensional wave interaction with a square cylinder. Ocean Engineering, 2001, 28, 1545-1555.	1.9	24
39	Cylindrical Smoothed Particle Hydrodynamics Simulations of Water Entry. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141, .	0.8	24
40	Numerical simulation of two-layered liquid sloshing in tanks under horizontal excitations. Ocean Engineering, 2021, 224, 108768.	1.9	23
41	Scattering and Trapping of Wave Energy by a Submerged Truncated Paraboloidal Shoal. Journal of Waterway, Port, Coastal and Ocean Engineering, 2007, 133, 94-103.	0.5	22
42	Numerical simulation of wave interaction with vertical circular cylinders of different submergences using immersed boundary method. Computers and Fluids, 2015, 106, 41-53.	1.3	22
43	Numerical simulation of submarine landslide tsunamis using particle based methods. Journal of Hydrodynamics, 2017, 29, 542-551.	1.3	22
44	A Cartesian cut-cell based multiphase flow model for large-eddy simulation of three-dimensional wave-structure interaction. Computers and Fluids, 2020, 213, 104747.	1.3	22
45	A two-phase flow model for wave–structure interaction using a virtual boundary force method. Computers and Fluids, 2016, 129, 101-110.	1.3	20
46	Sustainability of wave energy resources in the South China Sea based on five decades of changing climate. Energy, 2020, 210, 118604.	4.5	20
47	Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China. Energy, 2022, 249, 123710.	4.5	20
48	The simulation of a landslide-induced surge wave and its overtopping of a dam using a coupled ISPH model. Engineering Applications of Computational Fluid Mechanics, 2015, 9, 432-444.	1.5	19
49	The Total Risk Analysis of Large Dams under Flood Hazards. Water (Switzerland), 2018, 10, 140.	1.2	19
50	Bayesian network of risk assessment for a super-large dam exposed to multiple natural risk sources. Stochastic Environmental Research and Risk Assessment, 2019, 33, 581-592.	1.9	19
51	Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank. Journal of Ocean University of China, 2017, 16, 661-673.	0.6	18
52	Pitch motion reduction of semisubmersible floating offshore wind turbine substructure using a tuned liquid multicolumn damper. Marine Structures, 2022, 84, 103237.	1.6	18
53	An Analytic Solution for Wave Scattering by a Circular Cylinder Mounted on a Conical Shoal. Coastal Engineering Journal, 2007, 49, 393-416.	0.7	16
54	Interface instabilities in Faraday waves of two-layer liquids with free surface. Journal of Fluid Mechanics, 2022, 941, .	1.4	16

#	Article	IF	CITATIONS
55	Numerical simulation of wave-induced laminar boundary layers. Coastal Engineering, 2008, 55, 400-408.	1.7	15
56	A NUMERICAL STUDY OF DAM-BREAK FLOW AND SEDIMENT TRANSPORT FROM A QUAKE LAKE. Journal of Earthquake and Tsunami, 2011, 05, 401-428.	0.7	15
57	Experimental study of freak wave impacts on a tension-leg platform. Marine Structures, 2020, 74, 102821.	1.6	15
58	Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology. Renewable Energy, 2021, 172, 697-713.	4.3	15
59	Sloshing dynamics in cylindrical tank with porous layer under harmonic and seismic excitations. Ocean Engineering, 2021, 235, 109373.	1.9	15
60	Wave–current interaction at an angle 1: experiment. Journal of Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 424-436.	0.7	14
61	A partial cell technique for modeling the morphological change and scour. Coastal Engineering, 2018, 131, 88-105.	1.7	14
62	Bloch band gap of shallow-water waves over infinite arrays of parabolic bars and rectified cosinoidal bars and Bragg resonance over finite arrays of bars. Ocean Engineering, 2019, 188, 106235.	1.9	14
63	Experimental and numerical study of wave-current interactions with a dumbbell-shaped bridge cofferdam. Ocean Engineering, 2020, 210, 107433.	1.9	14
64	An experimental study of two-layer liquid sloshing under pitch excitations. Physics of Fluids, 2022, 34,	1.6	14
65	A new two-step projection method in an ISPH model for free surface flow computations. Coastal Engineering, 2017, 127, 68-79.	1.7	12
66	A compact numerical algorithm for solving the time-dependent mild slope equation. International Journal for Numerical Methods in Fluids, 2004, 45, 625-642.	0.9	11
67	Consistent Particle Method Simulation of Solitary Wave Interaction with a Submerged Breakwater. Water (Switzerland), 2019, 11, 261.	1.2	11
68	A simpleâ€wave damping model for flexible marsh plants. Limnology and Oceanography, 2021, 66, 4182-4196.	1.6	10
69	Two-phase smooth particle hydrodynamics modeling of air-water interface in aerated flows. Science China Technological Sciences, 2017, 60, 479-490.	2.0	9
70	Resonant sloshing in a rectangular tank under coupled heave and surge excitations. Applied Ocean Research, 2022, 121, 103076.	1.8	9
71	Eulerian and Lagrangian transport by shallow-water breaking waves. Physics of Fluids, 2022, 34, .	1.6	9
72	An improved SWE model for simulation of dam-break flows. Water Management, 2016, 169, 260-274.	0.4	8

#	Article	IF	Citations
73	Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow. China Ocean Engineering, 2018, 32, 301-311.	0.6	8
74	Exploitation potential of tidal current energy in Southern China seas. Energy Conversion and Management, 2022, 267, 115901.	4.4	8
75	A wave damping model for flexible marsh plants with leaves considering linear to weakly nonlinear wave conditions. Coastal Engineering, 2022, 175, 104124.	1.7	7
76	Experimental and numerical study of nonlinear modal characteristics of Faraday waves. Ocean Engineering, 2021, 221, 108554.	1.9	6
77	Numerical modelling of 3D stratified free surface flows: a case study of sediment dumping. International Journal for Numerical Methods in Fluids, 2006, 50, 1425-1444.	0.9	5
78	Numerical modeling and formulation of the runup of seismically-induced surge waves in idealized reservoirs. Soil Dynamics and Earthquake Engineering, 2021, 143, 106625.	1.9	5
79	Numerical Simulation of Propagation and Breaking Processes of a Focused Waves Group. Journal of Hydrodynamics, 2012, 24, 399-409.	1.3	4
80	The Numerical Modeling of Coupled Motions of a Moored Floating Body in Waves. Water (Switzerland), 2018, 10, 1748.	1.2	4
81	Numerical and experimental analysis of shallow turbulent flow over complex roughness beds. International Journal of Computational Fluid Dynamics, 2019, 33, 202-221.	0.5	4
82	Experimental Study of Turbulence and Entrained Air Characteristics in a Plunging Breaking Solitary Wave. International Journal of Ocean and Coastal Engineering, 2020, 03, .	0.3	4
83	Numerical and experimental studies of turbulence in vegetated open-channel flows. Environmental Fluid Mechanics, 2021, 21, 1137-1163.	0.7	4
84	Numerical modeling of air entrainment by turbulent plunging jet and aerated flow in the plunging pool. Environmental Fluid Mechanics, 2022, 22, 33-53.	0.7	4
85	Depth-resolved numerical model of dam break mud flows with Herschel-Bulkley rheology. Journal of Mountain Science, 2022, 19, 1001-1017.	0.8	4
86	Scale effects of incipient cavitation for high-speed flows. Water Management, 2013, 166, 402-408.	0.4	3
87	Numerical modeling of oscillatory turbulent boundary layer flows and sediment suspension. Journal of Ocean Engineering and Marine Energy, 2015, 1, 133-144.	0.9	3
88	3D Numerical Study of the Flow Properties in a Double-Spur Dikes Field during a Flood Process. Water (Switzerland), 2018, 10, 1574.	1.2	3
89	Effect of vertical velocity profile approximations on estimates of dam breach discharge using surface velocities. Journal of Flood Risk Management, 2021, 14, e12709.	1.6	3
90	Bed shear stress and turbulence characteristics under unsteady flows. Journal of Hydro-Environment Research, 2018, 21, 1-20.	1.0	2

#	Article	IF	CITATIONS
91	MODELING 3D FLUID SLOSHING USING LEVEL SET METHOD. Modern Physics Letters B, 2005, 19, 1743-1746.	1.0	1
92	PREDICTING RUN-UP OF BREAKING AND NONBREAKING LONG WAVES BY APPLYING THE CORNELL COMCOT MODEL. , 2009, , 147-163.		1
93	Wave–current interaction at an angle 2: theory. Journal of Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 437-449.	0.7	1
94	Permeability effects of single groin on flow characteristics by JOONGU KANG, HONGKOO YEO, SUNGJUNG KIM and UN JI,J. Hydraulic Res.49(6), 2011, pp. 728-735. Journal of Hydraulic Research/De Recherches Hydrauliques, 2013, 51, 102-102.	0.7	1
95	An analytic solution of the mild-slope equation for scattering by a truncated conical shoal. , 2004, , .		1
96	TRANSMISSION AND REFLECTION OF SOLITARY WAVES OVER STRUCTURES: A NUMERICAL WAVE TANK (NWT) APPROACH. , 2003, , .		0
97	PREDICTION OF SEDIMENT DISCHARGE IN RIVERS, ESTUARIES AND COASTAL WATERS. , 2002, , .		0
98	THE NEW DEPTH-AVERAGED EQUATIONS FOR WAVE PROPAGATION IN DEEP AND SHALLOW WATER. , 2002, , .		O