Stephanie G Wettstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4520002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 2012, 41, 8075.	38.1	1,167
2	Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 2013, 15, 584.	9.0	868
3	Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γâ€Valerolactone. Angewandte Chemie - International Edition, 2013, 52, 1270-1274.	13.8	397
4	Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy and Environmental Science, 2013, 6, 76-80.	30.8	332
5	Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy and Environmental Science, 2012, 5, 8199.	30.8	316
6	A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Current Opinion in Chemical Engineering, 2012, 1, 218-224.	7.8	273
7	Conversion of Hemicellulose to Furfural and Levulinic Acid using Biphasic Reactors with Alkylphenol Solvents. ChemSusChem, 2012, 5, 383-387.	6.8	228
8	Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catalysis Science and Technology, 2013, 3, 927-931.	4.1	213
9	Production of Biofuels from Cellulose and Corn Stover Using Alkylphenol Solvents. ChemSusChem, 2011, 4, 1078-1081.	6.8	130
10	Conversion of Sugars and Biomass to Furans Using Heterogeneous Catalysts in Biphasic Solvent Systems. ChemCatChem, 2018, 10, 4805-4816.	3.7	88
11	A sulfuric acid management strategy for the production of liquid hydrocarbon fuels via catalytic conversion of biomass-derived levulinic acid. Energy and Environmental Science, 2012, 5, 9690.	30.8	72
12	Production of butene oligomers as transportation fuels using butene for esterification of levulinic acid from lignocellulosic biomass: process synthesis and technoeconomic evaluation. Green Chemistry, 2012, 14, 3289.	9.0	59
13	Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent. Journal of Molecular Catalysis A, 2016, 422, 18-22.	4.8	57
14	A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous and Mesoporous Materials, 2017, 239, 221-234.	4.4	45
15	Adsorbate-Induced Expansion of Silicalite-1 Crystals. Industrial & Engineering Chemistry Research, 2008, 47, 9611-9616.	3.7	28
16	Influence of crystal expansion/contraction on zeolite membrane permeation. Journal of Membrane Science, 2010, 357, 98-104.	8.2	25
17	Liquid phase conversion of lignocellulosic biomass using biphasic systems. Biomass and Bioenergy, 2018, 118, 163-171.	5.7	25
18	SAPO-34/5A Zeolite Bead Catalysts for Furan Production from Xylose and Glucose. ACS Omega, 2018, 3, 16253-16259.	3.5	16

#	Article	IF	CITATIONS
19	The Effect of Solvent Polarity on Autocatalytic Furfural Production Confirmed by Multivariate Statistical Analysis. ChemCatChem, 2019, 11, 4715-4719.	3.7	10
20	Using Artificial Neural Networks to Estimate Xylose Conversion and Furfural Yield for Autocatalytic Dehydration Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 177-181.	6.7	5
21	Impact of Xylose on Dynamics of Water Diffusion in Mesoporous Zeolites Measured by NMR. Molecules, 2021, 26, 5518.	3.8	1