Paul Greengard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4519870/publications.pdf Version: 2024-02-01

DALLI CDEENCADD

#	Article	IF	CITATIONS
1	Regulation of NMDA receptor trafficking by amyloid-β. Nature Neuroscience, 2005, 8, 1051-1058.	14.8	1,417
2	Synaptic Vesicle Phosphoproteins and Regulation of Synaptic Function. Science, 1993, 259, 780-785.	12.6	1,248
3	Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity. Science, 2008, 321, 848-851.	12.6	1,036
4	A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types. Cell, 2008, 135, 738-748.	28.9	1,007
5	Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types. Cell, 2008, 135, 749-762.	28.9	807
6	The Neurobiology of Slow Synaptic Transmission. Science, 2001, 294, 1024-1030.	12.6	793
7	Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia. Nature Neuroscience, 2003, 6, 501-506.	14.8	791
8	Beyond the Dopamine Receptor. Neuron, 1999, 23, 435-447.	8.1	722
9	IRE1α Induces Thioredoxin-Interacting Protein to Activate the NLRP3 Inflammasome and Promote Programmed Cell Death under Irremediable ER Stress. Cell Metabolism, 2012, 16, 250-264.	16.2	707
10	Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmittersâ€. Nature, 1976, 260, 101-108.	27.8	705
11	DARPP-32: An Integrator of Neurotransmission. Annual Review of Pharmacology and Toxicology, 2004, 44, 269-296.	9.4	639
12	Indirubins Inhibit Glycogen Synthase Kinase-3β and CDK5/P25, Two Protein Kinases Involved in Abnormal Tau Phosphorylation in Alzheimer's Disease. Journal of Biological Chemistry, 2001, 276, 251-260.	3.4	633
13	DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. Journal of Neuroscience, 1984, 4, 111-124.	3.6	601
14	Essential Role of the Histone Methyltransferase G9a in Cocaine-Induced Plasticity. Science, 2010, 327, 213-216.	12.6	581
15	DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature, 1984, 310, 503-505.	27.8	576
16	Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10075-10078.	7.1	571
17	Pharmacological inhibitors of glycogen synthase kinase 3. Trends in Pharmacological Sciences, 2004, 25, 471-480.	8.7	559
18	Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 491-496.	7.1	558

#	Article	IF	CITATIONS
19	Estrogen reduces neuronal generation of Alzheimer β-amyloid peptides. Nature Medicine, 1998, 4, 447-451.	30.7	545
20	Pharmacological inhibitors of cyclin-dependent kinases. Trends in Pharmacological Sciences, 2002, 23, 417-425.	8.7	543
21	Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature, 1999, 402, 669-671.	27.8	538
22	Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nature Neuroscience, 2000, 3, 323-329.	14.8	517
23	Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron, 1995, 14, 385-397.	8.1	514
24	Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neurons. Science, 1991, 253, 1135-1138.	12.6	510
25	Alterations in 5-HT1B Receptor Function by p11 in Depression-Like States. Science, 2006, 311, 77-80.	12.6	507
26	Distinct pools of synaptic vesicles in neurotransmitter release. Nature, 1995, 375, 493-497.	27.8	492
27	Protein phosphorylation in the brain. Nature, 1983, 305, 583-588.	27.8	480
28	Synapsins as regulators of neurotransmitter release. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 269-279.	4.0	478
29	Processing of Alzheimer beta/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6003-6006.	7.1	473
30	Cerebellar neurodegeneration in the absence of microRNAs. Journal of Experimental Medicine, 2007, 204, 1553-1558.	8.5	461
31	Stimulation of β-Amyloid Precursor Protein Trafficking by Insulin Reduces Intraneuronal β-Amyloid and Requires Mitogen-Activated Protein Kinase Signaling. Journal of Neuroscience, 2001, 21, 2561-2570.	3.6	460
32	Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 2001, 410, 376-380.	27.8	442
33	Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proceedings of the United States of America, 1997, 94, 9956-9961.	7.1	440
34	Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature, 1988, 331, 358-360.	27.8	428
35	DARPP-32: Regulator of the Efficacy of Dopaminergic Neurotransmission. , 1998, 281, 838-842.		428
36	Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8378-8382.	7.1	421

#	Article	IF	CITATIONS
37	Chaperones increase association of tau protein with microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 721-726.	7.1	421
38	Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature, 1987, 326, 704-707.	27.8	414
39	Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature, 1986, 321, 774-776.	27.8	413
40	Critical Involvement of cAMP/DARPP-32 and Extracellular Signal-Regulated Protein Kinase Signaling in L-DOPA-Induced Dyskinesia. Journal of Neuroscience, 2007, 27, 6995-7005.	3.6	400
41	Cell type–specific mRNA purification by translating ribosome affinity purification (TRAP). Nature Protocols, 2014, 9, 1282-1291.	12.0	387
42	Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3679-3683.	7.1	377
43	Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature, 1990, 343, 369-372.	27.8	373
44	Bidirectional Regulation of DARPP-32 Phosphorylation by Dopamine. Journal of Neuroscience, 1997, 17, 8147-8155.	3.6	368
45	Spinophilin regulates the formation and function of dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9287-9292.	7.1	368
46	Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nature Neuroscience, 2000, 3, 226-230.	14.8	366
47	Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiology of Disease, 2005, 20, 187-198.	4.4	356
48	Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 742-747.	7.1	354
49	Protein phosphorylation regulates secretion of Alzheimer beta/A4 amyloid precursor protein Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 3055-3059.	7.1	351
50	Dopamine and cAMP-Regulated Phosphoprotein 32 kDa Controls Both Striatal Long-Term Depression and Long-Term Potentiation, Opposing Forms of Synaptic Plasticity. Journal of Neuroscience, 2000, 20, 8443-8451.	3.6	337
51	A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature, 1983, 301, 69-71.	27.8	333
52	Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein. Nature, 1978, 271, 478-479.	27.8	332
53	Paullones are potent inhibitors of glycogen synthase kinase-3Î ² and cyclin-dependent kinase 5/p25. FEBS Journal, 2000, 267, 5983-5994.	0.2	330
54	Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9235-9239.	7.1	328

#	Article	IF	CITATIONS
55	A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions. Science, 1987, 238, 1142-1144.	12.6	321
56	Synapsin dispersion and reclustering during synaptic activity. Nature Neuroscience, 2001, 4, 1187-1193.	14.8	317
57	Different Presynaptic Roles of Synapsins at Excitatory and Inhibitory Synapses. Journal of Neuroscience, 2004, 24, 11368-11380.	3.6	315
58	A Dopamine/D1 Receptor/Protein Kinase A/Dopamine- and cAMP-Regulated Phosphoprotein (<i>M</i> _r 32 kDa)/Protein Phosphatase-1 Pathway Regulates Dephosphorylation of the NMDA Receptor. Journal of Neuroscience, 1998, 18, 10297-10303.	3.6	314
59	Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3399-3404.	7.1	312
60	DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. Journal of Neuroscience, 1984, 4, 84-98.	3.6	306
61	Diverse Psychotomimetics Act Through a Common Signaling Pathway. Science, 2003, 302, 1412-1415.	12.6	306
62	Synaptic Vesicle Mobilization Is Regulated by Distinct Synapsin I Phosphorylation Pathways at Different Frequencies. Neuron, 2003, 38, 69-78.	8.1	303
63	Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease. Nature, 2010, 467, 95-98.	27.8	303
64	Regulation by synapsin I and Ca(2+)â€calmodulinâ€dependent protein kinase II of the transmitter release in squid giant synapse Journal of Physiology, 1991, 436, 257-282.	2.9	299
65	Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature, 1992, 359, 417-420.	27.8	299
66	Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14845-14850.	7.1	299
67	Regulation of Phosphorylation of the GluR1 AMPA Receptor in the Neostriatum by Dopamine and Psychostimulants <i>In Vivo</i> . Journal of Neuroscience, 2000, 20, 4480-4488.	3.6	295
68	Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature, 1990, 343, 647-651.	27.8	290
69	Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature, 2006, 442, 814-817.	27.8	289
70	Control of Cognition and Adaptive Behavior by the GLP/G9a Epigenetic Suppressor Complex. Neuron, 2009, 64, 678-691.	8.1	286
71	Inhibition by dopamine of (Na+ + K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature, 1990, 347, 386-388.	27.8	282
72	Protein phosphorylation inhibits production of Alzheimer amyloid beta/A4 peptide Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9195-9198.	7.1	282

#	Article	IF	CITATIONS
73	Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP–32 and spinophilin. Nature Neuroscience, 1999, 2, 13-17.	14.8	280
74	Three-Dimensional Architecture of Presynaptic Terminal Cytomatrix. Journal of Neuroscience, 2007, 27, 6868-6877.	3.6	280
75	Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 7487-7491.	7.1	278
76	Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 5402-5406.	7.1	277
77	Phorbol Ester Enhancement of Neurotransmitter Release from Rat Brain Synaptosomes. Journal of Neurochemistry, 1987, 48, 615-621.	3.9	273
78	Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nature Neuroscience, 2007, 10, 880-886.	14.8	270
79	Generation of Alzheimer Â-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3748-3752.	7.1	267
80	Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes. Nature, 1989, 340, 718-721.	27.8	265
81	Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9511-9516.	7.1	265
82	MicroRNA-128 Governs Neuronal Excitability and Motor Behavior in Mice. Science, 2013, 342, 1254-1258.	12.6	264
83	Brain histamine receptors as targets for antidepressant drugs. Nature, 1978, 272, 329-333.	27.8	260
84	Distinct Roles of PDE4 and PDE10A in the Regulation of cAMP/PKA Signaling in the Striatum. Journal of Neuroscience, 2008, 28, 10460-10471.	3.6	257
85	Functional modulation of the nicotinic acetylcholine receptor by tyrosine phosphorylation. Nature, 1988, 336, 677-680.	27.8	255
86	Protein Phosphorylation and Neuronal Function. Journal of Neurochemistry, 1985, 45, 11-23.	3.9	252
87	Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9262-9267.	7.1	252
88	Cocaine Regulates MEF2 to Control Synaptic and Behavioral Plasticity. Neuron, 2008, 59, 621-633.	8.1	246
89	Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nature Communications, 2014, 5, 5316.	12.8	245
90	Dopamine Enhancement of NMDA Currents in Dissociated Medium-Sized Striatal Neurons: Role of D1 Receptors and DARPP-32. Journal of Neurophysiology, 2002, 88, 3010-3020.	1.8	244

#	Article	IF	CITATIONS
91	Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56Â subunit. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2979-2984.	7.1	244
92	Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9230-9234.	7.1	238
93	Inhibition of mTOR Signaling in Parkinson's Disease Prevents <scp>l</scp> -DOPA–Induced Dyskinesia. Science Signaling, 2009, 2, ra36.	3.6	237
94	A third member of the synapsin gene family. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4667-4672.	7.1	225
95	DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein: regional, tissue, and phylogenetic distribution. Journal of Neuroscience, 1986, 6, 1469-1481.	3.6	221
96	Histamine-sensitive adenylate cyclase in mammalian brain. Nature, 1976, 260, 163-165.	27.8	219
97	A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature, 2008, 453, 879-884.	27.8	219
98	The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease. Nature, 2020, 586, 735-740.	27.8	219
99	Amplification of dopaminergic signaling by a positive feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12840-12845.	7.1	218
100	Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3182-3187.	7.1	217
101	Neuronâ€Specific Phosphorylation of Alzheimer's βâ€Amyloid Precursor Protein by Cyclinâ€Dependent Kinase 5. Journal of Neurochemistry, 2000, 75, 1085-1091.	3.9	212
102	Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience, 2003, 116, 19-22.	2.3	212
103	Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6218-6221.	7.1	205
104	Cell type–specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nature Neuroscience, 2008, 11, 932-939.	14.8	205
105	DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. Journal of Neuroscience, 1984, 4, 99-110.	3.6	201
106	Calcium/phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7713-7717.	7.1	201
107	Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer's APP-CTF for terminal degradation via autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17071-17076.	7.1	200
108	D2 dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11607-11612.	7.1	198

#	Article	IF	CITATIONS
109	Aβ-Mediated NMDA Receptor Endocytosis in Alzheimer's Disease Involves Ubiquitination of the Tyrosine Phosphatase STEP ₆₁ . Journal of Neuroscience, 2010, 30, 5948-5957.	3.6	198
110	A smallâ€molecule enhancer of autophagy decreases levels of Aβ and APPâ€CTF <i>via</i> Atg5â€dependent autophagy pathway . FASEB Journal, 2011, 25, 1934-1942.	0.5	197
111	Colocalization of synapsin and actin during synaptic vesicle recycling. Journal of Cell Biology, 2003, 161, 737-747.	5.2	193
112	Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1856-1860.	7.1	190
113	An endogenous substrate for cGMP-dependent protein kinase in mammalian cerebellum. Nature, 1978, 273, 61-62.	27.8	188
114	Impaired TrkB Receptor Signaling Underlies Corticostriatal Dysfunction in Huntington's Disease. Neuron, 2014, 83, 178-188.	8.1	186
115	Role of protein phosphorylation in neuronal signal transduction 1. FASEB Journal, 1989, 3, 1583-1592.	0.5	183
116	Gleevec inhibits β-amyloid production but not Notch cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12444-12449.	7.1	183
117	M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia. Neuron, 2015, 88, 762-773.	8.1	183
118	Mammalian brain phosphoproteins as substrates for calcineurin Journal of Biological Chemistry, 1984, 259, 8080-8083.	3.4	181
119	Mechanisms of Locomotor Sensitization to Drugs of Abuse in a Two-Injection Protocol. Neuropsychopharmacology, 2010, 35, 401-415.	5.4	180
120	Advances in the pharmacological treatment of Parkinson's disease: targeting neurotransmitter systems. Trends in Neurosciences, 2013, 36, 543-554.	8.6	180
121	Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer's disease mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19014-19019.	7.1	179
122	Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Research, 1998, 808, 8-12.	2.2	178
123	Induction of formation of presynaptic terminals in neuroblastoma cells by synapsin IIb. Nature, 1991, 349, 697-700.	27.8	174
124	Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature, 2002, 418, 774-778.	27.8	174
125	Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+ /calmodulin-dependent protein kinase II. FEBS Journal, 1990, 192, 263-273.	0.2	171
126	Differential expression of protein phosphatase 1 isoforms in mammalian brain. Journal of	3.6	171

8

#	Article	IF	CITATIONS
127	Molecular determinants of selective dopaminergic vulnerability in Parkinsonââ,¬â,,¢s disease: an update. Frontiers in Neuroanatomy, 2014, 8, 152.	1.7	171
128	Calcium-dependent protein phosphorylation during secretion by exocytosis in the mast cell. Nature, 1978, 275, 329-331.	27.8	170
129	Calcium regulates processing of the Alzheimer amyloid protein precursor in a protein kinase C-independent manner Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4489-4493.	7.1	170
130	Purification and characterization of Ca2+/calmodulin-dependent protein kinase I from bovine brain. Journal of Biological Chemistry, 1987, 262, 7273-81.	3.4	170
131	Opposing Changes in Phosphorylation of Specific Sites in Synapsin I During Ca ²⁺ -Dependent Glutamate Release in Isolated Nerve Terminals. Journal of Neuroscience, 2001, 21, 7944-7953.	3.6	169
132	FGF acts as a co-transmitter through adenosine A2A receptor to regulate synaptic plasticity. Nature Neuroscience, 2008, 11, 1402-1409.	14.8	167
133	Cellular and molecular basis for stress-induced depression. Molecular Psychiatry, 2017, 22, 1440-1447.	7.9	166
134	Regulation of Alzheimer's disease amyloid-beta formation by casein kinase I. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4159-4164.	7.1	164
135	<scp>l</scp> â€DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice. Journal of Neurochemistry, 2009, 108, 621-633.	3.9	164
136	Regional distribution of calcium- and cyclic adenosine 3':5'- monophosphate-regulated protein phosphorylation systems in mammalian brain. II. Soluble systems. Journal of Neuroscience, 1983, 3, 302-311.	3.6	160
137	Regulation of Neurotransmitter Release by Synapsin III. Journal of Neuroscience, 2002, 22, 4372-4380.	3.6	158
138	Evidence for Decreased DARPP-32 in the Prefrontal Cortex of Patients With Schizophrenia. Archives of General Psychiatry, 2002, 59, 705.	12.3	157
139	Three-Dimensional Study of Alzheimer's Disease Hallmarks Using the iDISCO Clearing Method. Cell Reports, 2016, 16, 1138-1152.	6.4	156
140	Distinct Levels of Dopamine Denervation Differentially Alter Striatal Synaptic Plasticity and NMDA Receptor Subunit Composition. Journal of Neuroscience, 2010, 30, 14182-14193.	3.6	155
141	Two sites of action for synapsin domain E in regulating neurotransmitter release. Nature Neuroscience, 1998, 1, 29-35.	14.8	154
142	The DARPP-32/protein phosphatase-1 cascade: a model for signal integration1Published on the World Wide Web on 22 January 1998.1. Brain Research Reviews, 1998, 26, 274-284.	9.0	152
143	DARPP-32 mediates the actions of multiple drugs of abuse. AAPS Journal, 2005, 7, E353-E360.	4.4	152
144	Regulated Formation of Golgi Secretory Vesicles Containing Alzheimer β-Amyloid Precursor Protein. Journal of Biological Chemistry, 1995, 270, 23243-23245.	3.4	149

#	Article	IF	CITATIONS
145	Biochemical and Behavioral Evidence for Antidepressant-Like Effects of 5-HT6 Receptor Stimulation. Journal of Neuroscience, 2007, 27, 4201-4209.	3.6	149
146	Role of p11 in Cellular and Behavioral Effects of 5-HT4 Receptor Stimulation. Journal of Neuroscience, 2009, 29, 1937-1946.	3.6	149
147	Spinophilin Blocks Arrestin Actions in Vitro and in Vivo at G Protein-Coupled Receptors. Science, 2004, 304, 1940-1944.	12.6	148
148	Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. Journal of Biological Chemistry, 1989, 264, 21748-21759.	3.4	148
149	Localization of cyclic GMP-dependent protein kinase and substrate in mammalian cerebellum Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 5537-5541.	7.1	147
150	Mammalian brain phosphoproteins as substrates for calcineurin. Journal of Biological Chemistry, 1984, 259, 8080-3.	3.4	147
151	Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2receptors. Journal of Neurochemistry, 2006, 96, 482-488.	3.9	146
152	p11 and its role in depression and therapeutic responses to antidepressants. Nature Reviews Neuroscience, 2013, 14, 673-680.	10.2	144
153	Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proceedings of the United States of America, 2012, 109, 11360-11365.	7.1	141
154	Phosphorylation of DARPP-32 and protein phosphatase inhibitor-1 in rat choroid plexus: regulation by factors other than dopamine. Journal of Neuroscience, 1992, 12, 3071-3083.	3.6	139
155	Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nature Cell Biology, 2005, 7, 405-411.	10.3	138
156	D ₁ Dopamine Receptor Activation Reduces GABA _A Receptor Currents in Neostriatal Neurons Through a PKA/DARPP-32/PP1 Signaling Cascade. Journal of Neurophysiology, 2000, 83, 2996-3004.	1.8	135
157	Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1322-1327.	7.1	135
158	DARPP-32, a dopamine- and adenosine 3â€~:5â€~-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1 Journal of Biological Chemistry, 1984, 259, 14491-14497.	3.4	135
159	Structural Domains Involved in the Regulation of Transmitter Release by Synapsins. Journal of Neuroscience, 2005, 25, 2658-2669.	3.6	134
160	Argonaute 2 in dopamine 2 receptor–expressing neurons regulates cocaine addiction. Journal of Experimental Medicine, 2010, 207, 1843-1851.	8.5	134
161	Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A. Journal of Neurochemistry, 2002, 81, 832-841.	3.9	133
162	The Rho-Specific GEF Lfc Interacts with Neurabin and Spinophilin to Regulate Dendritic Spine Morphology. Neuron, 2005, 47, 85-100.	8.1	132

#	Article	IF	CITATIONS
163	A protein kinase A–dependent molecular switch in synapsins regulates neurite outgrowth. Nature Neuroscience, 2002, 5, 431-437.	14.8	128
164	Glutamate regulation of DARPP-32 phosphorylation in neostriatal neurons involves activation of multiple signaling cascades. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1199-1204.	7.1	128
165	Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. Journal of Biological Chemistry, 1989, 264, 21748-59.	3.4	127
166	Molecular Determinants of Synapsin Targeting to Presynaptic Terminals. Journal of Neuroscience, 2004, 24, 3711-3720.	3.6	125
167	Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopamine Agonists and Display Impaired Spatial Learning. Journal of Neuroscience, 2002, 22, 5188-5197.	3.6	124
168	Roscovitine-Derived, Dual-Specificity Inhibitors of Cyclin-Dependent Kinases and Casein Kinases 1. Journal of Medicinal Chemistry, 2008, 51, 5229-5242.	6.4	124
169	cGMP-Dependent Protein Kinase in Dorsal Root Ganglion: Relationship with Nitric Oxide Synthase and Nociceptive Neurons. Journal of Neuroscience, 1996, 16, 3130-3138.	3.6	123
170	Presenilin-1 Regulates Intracellular Trafficking and Cell Surface Delivery of β-Amyloid Precursor Protein. Journal of Biological Chemistry, 2003, 278, 3446-3454.	3.4	123
171	Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2191-2196.	7.1	123
172	[23] Production of phosphorylation state-specific antibodies. Methods in Enzymology, 1991, 201, 264-283.	1.0	122
173	Distinct Roles of Synapsin I and Synapsin II during Neuronal Development. Molecular Medicine, 1998, 4, 22-28.	4.4	122
174	Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11062-11068.	7.1	121
175	Synapsin Controls Both Reserve and Releasable Synaptic Vesicle Pools during Neuronal Activity and Short-Term Plasticity in <i>Aplysia</i> . Journal of Neuroscience, 2001, 21, 4195-4206.	3.6	120
176	Inhibitor of the Tyrosine Phosphatase STEP Reverses Cognitive Deficits in a Mouse Model of Alzheimer's Disease. PLoS Biology, 2014, 12, e1001923.	5.6	119
177	Distribution of DARPP-32 in the basal ganglia: an electron microscopic study. Journal of Neurocytology, 1990, 19, 39-52.	1.5	118
178	The Neurobiology of Dopamine Signaling. Bioscience Reports, 2001, 21, 247-269.	2.4	118
179	The role of DARPP-32 in the actions of drugs of abuse. Neuropharmacology, 2004, 47, 14-23.	4.1	117
180	Cannabinoid Action Depends on Phosphorylation of Dopamine- and cAMP-Regulated Phosphoprotein of 32 kDa at the Protein Kinase A Site in Striatal Projection Neurons. Journal of Neuroscience, 2005, 25, 8432-8438.	3.6	117

#	Article	IF	CITATIONS
181	Identification of the Cortical Neurons thatÂMediate Antidepressant Responses. Cell, 2012, 149, 1152-1163.	28.9	117
182	Localization in mammalian brain of G-substrate, a specific substrate for guanosine 3',5'-cyclic monophosphate-dependent protein kinase. Journal of Neuroscience, 1984, 4, 2843-2849.	3.6	116
183	Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine. European Journal of Neuroscience, 2007, 26, 3509-3517.	2.6	116
184	Characterization of the Neuronal Targeting Protein Spinophilin and Its Interactions with Protein Phosphatase-1â€. Biochemistry, 1999, 38, 4365-4373.	2.5	114
185	DARPP-32 mediates serotonergic neurotransmission in the forebrain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3188-3193.	7.1	114
186	Opposite regulation by typical and atypical anti-psychotics of ERK1/2, CREB and Elk-1 phosphorylation in mouse dorsal striatum. Journal of Neurochemistry, 2004, 86, 451-459.	3.9	114
187	Norbin Is an Endogenous Regulator of Metabotropic Glutamate Receptor 5 Signaling. Science, 2009, 326, 1554-1557.	12.6	114
188	Activation of adenosine A2A and dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons. Neuroscience, 1998, 84, 223-228.	2.3	113
189	ldentification of neurodegenerative factors using translatome–regulatory network analysis. Nature Neuroscience, 2015, 18, 1325-1333.	14.8	113
190	p11 (S100A10) — an inducible adaptor protein that modulates neuronal functions. Current Opinion in Pharmacology, 2007, 7, 27-32.	3.5	112
191	Synapsin IIa Controls the Reserve Pool of Glutamatergic Synaptic Vesicles. Journal of Neuroscience, 2008, 28, 10835-10843.	3.6	112
192	Protein Tyrosine Kinase Activity and Its Endogenous Substrates in Rat Brain: A Subcellular and Regional Survey. Journal of Neurochemistry, 1988, 50, 1447-1455.	3.9	109
193	Calcitonin gene-related peptide potentiates synaptic responses at developing neuromuscular junction. Nature, 1993, 363, 76-79.	27.8	109
194	The Cytoplasmic Domain of Alzheimer's Amyloid Precursor Protein Is Phosphorylated at Thr654, Ser655, and Thr668 in Adult Rat Brain and Cultured Cells. Molecular Medicine, 1997, 3, 111-123.	4.4	109
195	Evidence for a role of the 5-HT _{1B} receptor and its adaptor protein, p11, in <scp>l</scp> -DOPA treatment of an animal model of Parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2163-2168.	7.1	109
196	Synapsin III: Developmental Expression, Subcellular Localization, and Role in Axon Formation. Journal of Neuroscience, 2000, 20, 3736-3744.	3.6	108
197	Role of Calcineurin and Protein Phosphatase-2A in the Regulation of DARPP-32 Dephosphorylation in Neostriatal Neurons. Journal of Neurochemistry, 2008, 72, 2015-2021.	3.9	108
198	Methylphenidate-induced dendritic spine formation and ΔFosB expression in nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2915-2920.	7.1	107

#	Article	IF	CITATIONS
199	Molecular evolution of the synapsin gene family. , 1999, 285, 360-377.		105
200	A role for LYNX2 in anxiety-related behavior. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4477-4482.	7.1	105
201	Reversal of Depressed Behaviors in Mice by p11 Gene Therapy in the Nucleus Accumbens. Science Translational Medicine, 2010, 2, 54ra76.	12.4	105
202	Cdk5 is essential for adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18567-18571.	7.1	104
203	DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. Journal of Biological Chemistry, 1984, 259, 14491-7.	3.4	104
204	Aberrant neurites and synaptic vesicle protein deficiency in synapsin II-depleted neurons. Science, 1994, 264, 977-979.	12.6	102
205	Regulation of Secretion of Alzheimer Amyloid Precursor Protein by the Mitogenâ€Activated Protein Kinase Cascade. Journal of Neurochemistry, 1998, 70, 524-530.	3.9	102
206	Roscovitine: a novel regulator of P/Qâ€ŧype calcium channels and transmitter release in central neurons. Journal of Physiology, 2002, 540, 761-770.	2.9	100
207	Presenilin-1 uses phospholipase D1 as a negative regulator of beta-amyloid formation. Proceedings of the United States of America, 2006, 103, 1941-1946.	7.1	99
208	The B''/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9876-9881.	7.1	99
209	WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3112-3116.	7.1	99
210	Selective Neuronal Vulnerability in Alzheimer's Disease: A Network-Based Analysis. Neuron, 2020, 107, 821-835.e12.	8.1	99
211	Role of the Astroglial Glutamate Exchanger xCT in Ventral Hippocampus in Resilience to Stress. Neuron, 2017, 96, 402-413.e5.	8.1	98
212	Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nature Neuroscience, 2020, 23, 15-20.	14.8	97
213	Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell, 2019, 25, 514-530.e8.	11.1	96
214	Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4578-4583.	7.1	93
215	Dopamine- and cAMP-regulated phosphoprotein DARPP-32: phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2682-2685.	7.1	92
216	Regulation of Neurabin I Interaction with Protein Phosphatase 1 by Phosphorylationâ€. Biochemistry, 1999, 38, 12943-12949.	2.5	92

#	Article	IF	CITATIONS
217	A Network of Control Mediated by Regulator of Calcium/Calmodulin-Dependent Signaling. Science, 2004, 306, 698-701.	12.6	92
218	SMARCA3, a Chromatin-Remodeling Factor, Is Required for p11-Dependent Antidepressant Action. Cell, 2013, 152, 831-843.	28.9	92
219	Motivational Effects of Ethanol in DARPP-32 Knock-Out Mice. Journal of Neuroscience, 2001, 21, 340-348.	3.6	91
220	Ca2+/calmodulin-dependent protein kinase II: identification of autophosphorylation sites responsible for generation of Ca2+/calmodulin-independence Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 5710-5714.	7.1	90
221	Phosphorylation of alzheimer amyloid precursor protein by protein kinase C. Neuroscience, 1992, 48, 755-761.	2.3	90
222	Suppression of synapsin II inhibits the formation and maintenance of synapses in hippocampal culture Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9225-9229.	7.1	90
223	Phosphorylation of VAMP/Synaptobrevin in Synaptic Vesicles by Endogenous Protein Kinases. Journal of Neurochemistry, 1995, 65, 1712-1720.	3.9	90
224	Phosphorylation of DARPP-32 at Threonine-34 is Required for Cocaine Action. Neuropsychopharmacology, 2006, 31, 555-562.	5.4	90
225	Translocation of synapsin I in response to depolarization of isolated nerve terminals Proceedings of the United States of America, 1989, 86, 8108-8112.	7.1	89
226	Regulation of Synaptotagmin I Phosphorylation by Multiple Protein Kinases. Journal of Neurochemistry, 2001, 73, 921-932.	3.9	89
227	Amyloidâ€Î² oligomers are inefficiently measured by enzymeâ€linked immunosorbent assay. Annals of Neurology, 2005, 58, 147-150.	5.3	88
228	Cyclic Nucleotide-Dependent Protein Kinases and Some Major Substrates in the Rat Cerebellum After Neonatal X-Irradiation. Journal of Neurochemistry, 1983, 40, 577-581.	3.9	87
229	Quantitation of nerve terminal populations: Synaptic vesicle-associated proteins as markers for synaptic density in the rat neostriatum. Synapse, 1988, 2, 516-520.	1.2	85
230	Histone H3 Phosphorylation is Under the Opposite Tonic Control of Dopamine D2 and Adenosine A2A Receptors in Striatopallidal Neurons. Neuropsychopharmacology, 2009, 34, 1710-1720.	5.4	85
231	Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuroscience, 2006, 140, 897-911.	2.3	84
232	Phosphorylation of Protein Phosphatase Inhibitor-1 by Cdk5. Journal of Biological Chemistry, 2001, 276, 14490-14497.	3.4	83
233	A Role for p11 in the Antidepressant Action of Brain-Derived Neurotrophic Factor. Biological Psychiatry, 2010, 68, 528-535.	1.3	83
234	Bioluminescence Resonance Energy Transfer Methods to Study G Protein-Coupled Receptor–Receptor Tyrosine Kinase Heteroreceptor Complexes. Methods in Cell Biology, 2013, 117, 141-164.	1.1	83

#	Article	IF	CITATIONS
235	Hypothalamic Amylin Acts in Concert with Leptin to Regulate Food Intake. Cell Metabolism, 2015, 22, 1059-1067.	16.2	83
236	A specific substrate from rabbit cerebellum for guanosine 3â€~:5â€~-monophosphate-dependent protein kinase. I. Purification and characterization Journal of Biological Chemistry, 1981, 256, 3487-3493.	3.4	83
237	A specific substrate from rabbit cerebellum for guanosine-3â€~:5â€~-monophosphate-dependent protein kinase. III. Amino acid sequences at the two phosphorylation sites Journal of Biological Chemistry, 1981, 256, 3501-3506.	3.4	83
238	Nerve impulses increase the phosphorylation state of protein I in rabbit superior cervical ganglion. Nature, 1982, 296, 452-454.	27.8	82
239	Metabolism of Alzheimer beta-amyloid precursor protein: regulation by protein kinase A in intact cells and in a cell-free system Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4081-4084.	7.1	82
240	The synapsins and the regulation of synaptic function. BioEssays, 1990, 12, 259-263.	2.5	81
241	Increased activity of cyclin-dependent kinase 5 leads to attenuation of cocaine-mediated dopamine signaling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1737-1742.	7.1	81
242	The role of ventral striatal cAMP signaling in stress-induced behaviors. Nature Neuroscience, 2015, 18, 1094-1100.	14.8	80
243	Immunocytochemical localization of DARPPâ€32, a dopamine and cyclic―AMPâ€regulated phosphoprotein, in the primate brain. Journal of Comparative Neurology, 1992, 323, 209-218.	1.6	79
244	Regulated cleavage of alzheimer β-amyloid precursor protein in the absence of the cytoplasmic tail. Neuroscience, 1993, 57, 873-877.	2.3	79
245	Mechanism of Regulation of Casein Kinase I Activity by Group I Metabotropic Glutamate Receptors. Journal of Biological Chemistry, 2002, 277, 45393-45399.	3.4	79
246	Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia. Molecular Psychiatry, 2017, 22, 792-801.	7.9	79
247	Serotonin stimulates phosphorylation of Protein I in the facial motor nucleus of rat brain. Nature, 1981, 289, 76-79.	27.8	78
248	Calcium-dependent serine phosphorylation of synaptophysin. Synapse, 1993, 13, 161-172.	1.2	78
249	AGAP1/AP-3-dependent endocytic recycling of M5 muscarinic receptors promotes dopamine release. EMBO Journal, 2010, 29, 2813-2826.	7.8	78
250	Neurogenic Effects of Fluoxetine Are Attenuated in p11 (S100A10) Knockout Mice. Biological Psychiatry, 2010, 67, 1048-1056.	1.3	78
251	Synapsin I Regulates Glutamate Release from Rat Brain Synaptosomes. Journal of Neurochemistry, 1992, 58, 783-785.	3.9	77
252	Phosphorylation of Spinophilin Modulates Its Interaction with Actin Filaments. Journal of Biological Chemistry, 2003, 278, 1186-1194.	3.4	77

#	Article	IF	CITATIONS
253	Dopamine- and cAMP-regulated Phosphoprotein of 32-kDa (DARPP-32)-dependent Activation of Extracellular Signal-regulated Kinase (ERK) and Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling in Experimental Parkinsonism. Journal of Biological Chemistry, 2012, 287, 27806-27812.	3.4	77
254	HCN2 Channels in Cholinergic Interneurons of Nucleus Accumbens Shell Regulate Depressive Behaviors. Neuron, 2019, 101, 662-672.e5.	8.1	77
255	Molecular identification of human G-substrate, a possible downstream component of the cGMP-dependent protein kinase cascade in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2467-2472.	7.1	76
256	The DARPP-32 knockout mouse. Brain Research Reviews, 2000, 31, 313-319.	9.0	75
257	Neuronal and behavioural abnormalities in striatal function in DARPP-32-mutant mice. European Journal of Neuroscience, 1999, 11, 1114-1118.	2.6	73
258	Reduction of cocaine place preference in mice lacking the protein phosphatase 1 inhibitors DARPP 32 or Inhibitor 1. Biological Psychiatry, 2002, 51, 612-620.	1.3	73
259	Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Frontiers in Neuroanatomy, 2011, 5, 50.	1.7	73
260	Ischemic Stroke Injury Is Mediated by Aberrant Cdk5. Journal of Neuroscience, 2014, 34, 8259-8267.	3.6	73
261	A specific substrate from rabbit cerebellum for guanosine 3':5'-monophosphate-dependent protein kinase. I. Purification and characterization. Journal of Biological Chemistry, 1981, 256, 3487-93.	3.4	71
262	Serum antibodies that distinguish between the phospho- and dephospho-forms of a phosphoprotein. Nature, 1982, 299, 734-736.	27.8	70
263	Accelerated Structural Maturation Induced by Synapsin I at Developing Neuromuscular Synapses ofXenopus laevis. European Journal of Neuroscience, 1995, 7, 261-270.	2.6	70
264	Phosphorylation of DARPP-32, a Dopamine- and cAMP-regulated Phosphoprotein, by Casein Kinase I in Vitro and in Vivo. Journal of Biological Chemistry, 1995, 270, 8772-8778.	3.4	70
265	A specific substrate from rabbit cerebellum for guanosine-3':5'-monophosphate-dependent protein kinase. III. Amino acid sequences at the two phosphorylation sites. Journal of Biological Chemistry, 1981, 256, 3501-6.	3.4	70
266	Characterization in Mammalian Brain of a DARPP-32 Serine Kinase Identical to Casein Kinase II. Journal of Neurochemistry, 1990, 55, 1772-1783.	3.9	69
267	DARPP-32, a phosphoprotein enriched in dopaminoceptive neurons bearing dopamine D1 receptors: Distribution in the cerebral cortex of the newborn and adult rhesus monkey. Journal of Comparative Neurology, 1990, 299, 327-348.	1.6	69
268	Differential regulation of dopamine D1 and D2 signaling by nicotine in neostriatal neurons. Journal of Neurochemistry, 2004, 90, 1094-1103.	3.9	68
269	ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine- innervated brain regions. II. Immunocytochemical localization in rat brain. Journal of Neuroscience, 1989, 9, 865-875.	3.6	67
270	Differential expression of ARPP-16 and ARPP-19, two highly related cAMP- regulated phosphoproteins, one of which is specifically associated with dopamine-innervated brain regions. Journal of Neuroscience, 1990, 10, 1124-1133.	3.6	67

#	Article	IF	CITATIONS
271	Protein phosphatase 1 regulation by inhibitors and targeting subunits. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3080-3085.	7.1	67
272	Protein phosphatase 2C binds selectively to and dephosphorylates metabotropic glutamate receptor 3. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 16006-16011.	7.1	67
273	Lowering β-Amyloid Levels Rescues Learning and Memory in a Down Syndrome Mouse Model. PLoS ONE, 2010, 5, e10943.	2.5	67
274	Distribution of Protein Phosphatase Inhibitor-1 in Brain and Peripheral Tissues of Various Species: Comparison with DARPP-32. Journal of Neurochemistry, 1992, 59, 1053-1061.	3.9	65
275	Subcellular distribution of spinophilin immunolabeling in primate prefrontal cortex: Localization to and within dendritic spines. Journal of Comparative Neurology, 2004, 469, 185-197.	1.6	65
276	Multiple Actions of Spinophilin Regulate Mu Opioid Receptor Function. Neuron, 2008, 58, 238-247.	8.1	65
277	Synapsin IIa accelerates functional development of neuromuscular synapses Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3882-3886.	7.1	64
278	Activation of dopamine D2 receptors decreases DARPP-32 phosphorylation in striatonigral and striatopallidal projection neurons via different mechanisms. Neuroscience, 1999, 88, 1005-1008.	2.3	64
279	Strain-Specific Regulation of Striatal Phenotype in Drd2-eGFP BAC Transgenic Mice. Journal of Neuroscience, 2012, 32, 9124-9132.	3.6	64
280	Mechanism of Inhibition of Protein Phosphatase 1 by DARPP-32: Studies with Recombinant DARPP-32 and Synthetic Peptides. Biochemical and Biophysical Research Communications, 1995, 206, 652-658.	2.1	63
281	Alteration by p11 of mCluR5 localization regulates depression-like behaviors. Molecular Psychiatry, 2015, 20, 1546-1556.	7.9	63
282	DARPP-32 knockout mice exhibit impaired reversal learning in a discriminated operant task. Brain Research, 2000, 867, 122-130.	2.2	62
283	Regulation of AMPA receptor dephosphorylation by glutamate receptor agonists. Neuropharmacology, 2003, 45, 703-713.	4.1	62
284	Kinetics of G-protein–coupled receptor endosomal trafficking pathways revealed by single quantum dots. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18658-18663.	7.1	62
285	Novel Target Sites for Estrogen Action in the Dorsal Hippocampus: An Examination of Synaptic Proteins. Endocrinology, 2001, 142, 1284-1289.	2.8	62
286	Phosphorylated Presenilin 1 decreases β-amyloid by facilitating autophagosome–lysosome fusion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7148-7153.	7.1	61
287	Spinophilin/neurabin reciprocally regulate signaling intensity by G protein-coupled receptors. EMBO Journal, 2007, 26, 2768-2776.	7.8	60
288	Phosphorylation of Rap1GAP, a striatally enriched protein, by protein kinase A controls Rap1 activity and dendritic spine morphology. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3531-3536.	7.1	60

#	Article	IF	CITATIONS
289	Expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human brain tissue. Journal of Neuroscience, 1994, 14, 985-998.	3.6	59
290	Spinophilin Stabilizes Cell Surface Expression of α2B-Adrenergic Receptors. Journal of Biological Chemistry, 2003, 278, 32405-32412.	3.4	59
291	Kinetic analysis of the phosphorylation-dependent interactions of synapsin I with rat brain synaptic vesicles. Journal of Physiology, 1997, 504, 501-515.	2.9	58
292	Physiological Role for Casein Kinase 1 in Glutamatergic Synaptic Transmission. Journal of Neuroscience, 2005, 25, 6601-6609.	3.6	58
293	ARPP-16/ARPP-19: a highly conserved family of cAMP-regulated phosphoproteins. Journal of Neurochemistry, 2001, 77, 229-238.	3.9	57
294	Amelioration of autism-like social deficits by targeting histone methyltransferases EHMT1/2 in Shank3-deficient mice. Molecular Psychiatry, 2020, 25, 2517-2533.	7.9	57
295	Protein phosphorylation in cultured endothelial cells. Journal of Cellular Physiology, 1986, 128, 367-374.	4.1	56
296	Alzheimer ?/A4-Amyloid Precursor Protein: Evidence for Putative Amyloidogenic Fragment. Journal of Neurochemistry, 1992, 58, 383-386.	3.9	56
297	A specific substrate from rabbit cerebellum for guanosine 3':5'-monophosphate-dependent protein kinase. II. Kinetic studies on its phosphorylation by guanosine 3':5'-monophosphate-dependent and adenosine 3':5'-monophosphate-dependent protein kinases Journal of Biological Chemistry, 1981, 256, 3494-3500.	3.4	56
298	The Arctic Alzheimer mutation favors intracellular amyloid-β production by making amyloid precursor protein less available to α-secretase. Journal of Neurochemistry, 2007, 101, 854-862.	3.9	55
299	Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice. Journal of Neurochemistry, 2003, 87, 1391-1401.	3.9	54
300	Elevation of p11 in lateral habenula mediates depression-like behavior. Molecular Psychiatry, 2018, 23, 1113-1119.	7.9	54
301	A Role of Drd2 Hippocampal Neurons in Context-Dependent Food Intake. Neuron, 2019, 102, 873-886.e5.	8.1	54
302	Role of adenosine A1 receptors in the modulation of dopamine D1 and adenosine A2a receptor signaling in the neostriatum. Neuroscience, 2006, 141, 19-25.	2.3	52
303	Phosphodiesterase 4 inhibition enhances the dopamine D1 receptor/PKA/DARPP-32 signaling cascade in frontal cortex. Psychopharmacology, 2012, 219, 1065-1079.	3.1	52
304	Purification and cDNA cloning of ARPP-16, a cAMP-regulated phosphoprotein enriched in basal ganglia, and of a related phosphoprotein, ARPP-19 Journal of Biological Chemistry, 1990, 265, 9476-9484.	3.4	52
305	Cocaine Self-Administration in Mice Is Inversely Related to Phosphorylation at Thr34 (Protein Kinase A) Tj ETQq1	1 0.78431 3.6	.4 rgBT /Over
306	Differential effects of cocaine on histone posttranslational modifications in identified populations of striatal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9511-9516.	7.1	51

#	Article	IF	CITATIONS
307	Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9745-9750.	7.1	51
308	Characterization of Transcripts from the Synapsin III Gene Locus. Journal of Neurochemistry, 1999, 73, 2266-2271.	3.9	50
309	Role of adrenoceptors in the regulation of dopamine/DARPPâ€32 signaling in neostriatal neurons. Journal of Neurochemistry, 2010, 113, 1046-1059.	3.9	50
310	Molecular evolution of the synapsin gene family. The Journal of Experimental Zoology, 1999, 285, 360-77.	1.4	50
311	Steroid Hormones May Regulate Autophosphorylation of Adenosine-3',5'-Monophosphate-Dependent Protein Kinase in Target Tissues. FEBS Journal, 1981, 114, 539-548.	0.2	49
312	Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice. Genes, Brain and Behavior, 2006, 5, 540-551.	2.2	49
313	Striatal dysregulation of Cdk5 alters locomotor responses to cocaine, motor learning, and dendritic morphology. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18561-18566.	7.1	49
314	Reduced levels of the tyrosine phosphatase STEP block beta amyloidâ€mediated CluA1/CluA2 receptor internalization. Journal of Neurochemistry, 2011, 119, 664-672.	3.9	49
315	Initiation of Behavioral Response to Antidepressants by Cholecystokinin Neurons of the Dentate Gyrus. Neuron, 2017, 95, 564-576.e4.	8.1	49
316	DARPP-32 and Phosphatase Inhibitor-1, Two Structurally Related Inhibitors of Protein Phosphatase-1, Are Both Present in Striatonigral Neurons. Journal of Neurochemistry, 1988, 50, 257-262.	3.9	48
317	Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain. Journal of Comparative Neurology, 2002, 454, 105-114.	1.6	48
318	Phosphorylation of spinophilin by ERK and cyclin-dependent PK 5 (Cdk5). Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3489-3494.	7.1	48
319	Prostaglandin E ₂ Acts on EP ₁ Receptor and Amplifies Both Dopamine D ₁ and D ₂ Receptor Signaling in the Striatum. Journal of Neuroscience, 2007, 27, 12900-12907.	3.6	48
320	Forebrain overexpression of CK1ĺ leads to down-regulation of dopamine receptors and altered locomotor activity reminiscent of ADHD. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4401-4406.	7.1	48
321	Synapsin Ia, Synapsin Ib, Protein IIIa, and Protein IIIb, Four Related Synaptic Vesicle-Associated Phosphoproteins, Share Regional and Cellular Localization in Rat Brain. Journal of Neurochemistry, 1988, 51, 1214-1220.	3.9	47
322	Amyloid β Peptide Formation in Cell-free Preparations. Journal of Biological Chemistry, 1996, 271, 24670-24674.	3.4	47
323	Regulation by cAMP and vasoactive intestinal peptide of phosphorylation of specific proteins in striatal cells in culture Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7790-7794.	7.1	46
324	Immunocytochemical localization of phosphatase inhibitor-1 in rat brain. Journal of Comparative Neurology, 1991, 310, 170-188.	1.6	46

#	Article	IF	CITATIONS
325	Processing of Alzheimer Aβ-Amyloid Precursor Protein: Cell Biology, Regulation, and Role in Alzheimer Disease. International Review of Neurobiology, 1994, 36, 29-50.	2.0	46
326	Early involvement of synapsin III in neural progenitor cell development in the adult hippocampus. Journal of Comparative Neurology, 2008, 507, 1860-1870.	1.6	46
327	Mice lacking synapsin III show abnormalities in explicit memory and conditioned fear. Genes, Brain and Behavior, 2010, 9, 257-268.	2.2	46
328	Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Molecular Psychiatry, 2020, 25, 1229-1244.	7.9	46
329	Dopamine D1 vs D5 receptor-dependent induction of seizures in relation to DARPP-32, ERK1/2 and GluR1-AMPA signalling. Neuropharmacology, 2008, 54, 1051-1061.	4.1	45
330	Co-expression of serotonin 5-HT1B and 5-HT4 receptors in p11 containing cells in cerebral cortex, hippocampus, caudate-putamen and cerebellum. Neuropharmacology, 2011, 61, 442-450.	4.1	45
331	Cellular and subcellular distribution of spinophilin, a PP1 regulatory protein that bundles F-actin in dendritic spines. Journal of Comparative Neurology, 2004, 479, 374-388.	1.6	44
332	CSAP modulates Î ³ -secretase specificity by inducing conformational change in PS1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6385-6390.	7.1	44
333	Activation of the cAMP/PKA/DARPP-32 Signaling Pathway is Required for Morphine Psychomotor Stimulation but not for Morphine Reward. Neuropsychopharmacology, 2007, 32, 1995-2003.	5.4	43
334	Presenilins and Î ³ -Secretase Inhibitors Affect Intracellular Trafficking and Cell Surface Localization of the Î ³ -Secretase Complex Components. Journal of Biological Chemistry, 2004, 279, 40560-40566.	3.4	42
335	Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 734-739.	7.1	42
336	Bidirectional regulation of Aβ levels by Presenilin 1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7142-7147.	7.1	42
337	C99 selectively accumulates in vulnerable neurons in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, 273-282.	0.8	42
338	A specific substrate from rabbit cerebellum for guanosine 3':5'-monophosphate-dependent protein kinase. II. Kinetic studies on its phosphorylation by guanosine 3':5'-monophosphate-dependent and adenosine 3':5'-monophosphate-dependent protein kinases. Journal of Biological Chemistry, 1981, 256, 3494-500.	3.4	42
339	Increased cyclic GMP levels associated with contraction in muscle fibres of the giant barnacle. Nature, 1977, 267, 534-536.	27.8	41
340	Tonically active protein kinase A regulates neurotransmitter release at the squid giant synapse. Journal of Physiology, 2001, 531, 141-146.	2.9	41
341	Ahnak scaffolds p11/Anxa2 complex and L-type voltage-gated calcium channel and modulates depressive behavior. Molecular Psychiatry, 2020, 25, 1035-1049.	7.9	41
342	The cytoplasmic domain of Alzheimer's amyloid precursor protein is phosphorylated at Thr654, Ser655, and Thr668 in adult rat brain and cultured cells. Molecular Medicine, 1997, 3, 111-23.	4.4	41

#	Article	IF	CITATIONS
343	Purification and cDNA cloning of ARPP-16, a cAMP-regulated phosphoprotein enriched in basal ganglia, and of a related phosphoprotein, ARPP-19. Journal of Biological Chemistry, 1990, 265, 9476-84.	3.4	41
344	μ- and Î-opioid receptor agonists inhibit DARPP-32 phosphorylation in distinct populations of striatal projection neurons. European Journal of Neuroscience, 1999, 11, 2182-2186.	2.6	39
345	Dopamine D1 Receptor-Induced Gene Transcription Is Modulated by DARPP-32. Journal of Neurochemistry, 2001, 75, 248-257.	3.9	39
346	Subcellular Distribution of Neurabin Immunolabeling in Primate Prefrontal Cortex: Comparison with Spinophilin. Cerebral Cortex, 2004, 14, 1398-1407.	2.9	39
347	A neurocomputational method for fully automated 3D dendritic spine detection and segmentation of medium-sized spiny neurons. Neurolmage, 2010, 50, 1472-1484.	4.2	38
348	Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11. Molecular Psychiatry, 2013, 18, 1096-1105.	7.9	38
349	DARPP-32 interaction with adducin may mediate rapid environmental effects on striatal neurons. Nature Communications, 2015, 6, 10099.	12.8	37
350	Cell―and regionâ€specific expression of depressionâ€related protein p11 (S100a10) in the brain. Journal of Comparative Neurology, 2017, 525, 955-975.	1.6	37
351	A Functional Mouse Retroposed Gene Rps23r1 Reduces Alzheimer's β-Amyloid Levels and Tau Phosphorylation. Neuron, 2009, 64, 328-340.	8.1	36
352	Cyclic AMP-Dependent and Cyclic GMP-Dependent Protein Kinases of Nervous Tissue. Current Topics in Cellular Regulation, 1981, 19, 219-256.	9.6	36
353	Nicotine Regulates DARPP-32 (Dopamine- and cAMP-Regulated Phosphoprotein of 32 kDa) Phosphorylation at Multiple Sites in Neostriatal Neurons. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 872-878.	2.5	35
354	Regulation of DARPP-32 phosphorylation by Δ9-tetrahydrocannabinol. Neuropharmacology, 2008, 54, 31-35.	4.1	35
355	Alterations of p11 in brain tissue and peripheral blood leukocytes in Parkinson's disease. Proceedings of the United States of America, 2017, 114, 2735-2740.	7.1	35
356	Introduction of Impermeant Molecules into Synaptosomes Using Freeze/Thaw Permeabilization. Journal of Neurochemistry, 1989, 52, 521-529.	3.9	34
357	Thr123 of rat G-substrate contributes to its action as a protein phosphatase inhibitor. Neuroscience Research, 2003, 45, 79-89.	1.9	34
358	α2-Adrenergic Agonist Enrichment of Spinophilin at the Cell Surface Involves βγ Subunits of Gi Proteins and Is Preferentially Induced by the α2A-Subtype. Molecular Pharmacology, 2005, 67, 1690-1696.	2.3	34
359	A mathematical tool for exploring the dynamics of biological networks. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19169-19174.	7.1	34
360	Hippocampal mossy cell involvement in behavioral and neurogenic responses to chronic antidepressant treatment. Molecular Psychiatry, 2020, 25, 1215-1228.	7.9	34

#	Article	IF	CITATIONS
361	Immunocytochemical localization of amyloid precursor protein in rat brain. Journal of Comparative Neurology, 1994, 348, 244-260.	1.6	33
362	Neurabin Scaffolding of Adenosine Receptor and RGS4 Regulates Anti-Seizure Effect of Endogenous Adenosine. Journal of Neuroscience, 2012, 32, 2683-2695.	3.6	33
363	Selective Knockout of the Casein Kinase 2 in D1 Medium Spiny Neurons Controls Dopaminergic Function. Biological Psychiatry, 2013, 74, 113-121.	1.3	33
364	The convergence of endosomal and autophagosomal pathways. Autophagy, 2014, 10, 694-696.	9.1	33
365	Serotonin receptor 4 in the hippocampus modulates mood and anxiety. Molecular Psychiatry, 2021, 26, 2334-2349.	7.9	33
366	Phosphorylation of DARPPâ€32 Is Regulated by GABA in Rat Striatum and Substantia Nigra. Journal of Neurochemistry, 1994, 63, 1766-1771.	3.9	32
367	Quantitative Analysis of Protein Phosphorylation in Mouse Brain by Hypothesis-Driven Multistage Mass Spectrometry. Analytical Chemistry, 2005, 77, 7845-7851.	6.5	32
368	Enhanced generation of Alzheimer's amyloidâ€Ĵ² following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase C. Journal of Neurochemistry, 2009, 108, 319-330.	3.9	32
369	Protein Phosphorylation Regulates Relative Utilization of Processing Pathways for Alzheimer β/A4 Amyloid Precursor Protein ^a . Annals of the New York Academy of Sciences, 1993, 695, 117-121.	3.8	31
370	CK2 negatively regulates Gα _s signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14096-14101.	7.1	31
371	APP intracellular domain–WAVE1 pathway reduces amyloid-β production. Nature Medicine, 2015, 21, 1054-1059.	30.7	31
372	ARPP-16 Is a Striatal-Enriched Inhibitor of Protein Phosphatase 2A Regulated by Microtubule-Associated Serine/Threonine Kinase 3 (Mast 3 Kinase). Journal of Neuroscience, 2017, 37, 2709-2722.	3.6	31
373	Cell-Type Specific Expression of p11 Controls Cocaine Reward. Biological Psychiatry, 2014, 76, 794-801.	1.3	30
374	Emergence of 5-HT5A signaling in parvalbumin neurons mediates delayed antidepressant action. Molecular Psychiatry, 2020, 25, 1191-1201.	7.9	30
375	AP-1 controls the p11-dependent antidepressant response. Molecular Psychiatry, 2020, 25, 1364-1381.	7.9	30
376	Nicotinic cholinergic stimulation increases cyclic GMP levels in vertebrate skeletal muscle. Nature, 1978, 275, 451-453.	27.8	29
377	Dual involvement of G-substrate in motor learning revealed by gene deletion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3525-3530.	7.1	29
378	Relevance of the COPI complex for Alzheimer's disease progression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5418-5423.	7.1	29

#	Article	IF	CITATIONS
379	Reduced Kv3.1 Activity in Dentate Gyrus Parvalbumin Cells Induces Vulnerability to Depression. Biological Psychiatry, 2020, 88, 405-414.	1.3	29
380	Chronic Treatment of Rats with SCH-23390 or Raclopride Does Not Affect the Concentrations of DARPP-32 or Its mRNA in Dopamine-Innervated Brain Regions. Journal of Neurochemistry, 1990, 55, 204-207.	3.9	28
381	Dephosphorylation of Ser-137 in DARPP-32 by protein phosphatases 2A and 2C: different roles in vitro and in striatonigral neurons. Biochemical Journal, 1998, 330, 211-216.	3.7	28
382	ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine- innervated brain regions. I. Purification and characterization of the protein from bovine caudate nucleus. Journal of Neuroscience, 1989, 9, 851-864.	3.6	27
383	Preliminary evidence that early reduction in p11 levels in natural killer cells and monocytes predicts the likelihood of antidepressant response to chronic citalopram. Molecular Psychiatry, 2014, 19, 962-964.	7.9	27
384	Phylogenetic Survey of Proteins Related to Synapsin I and Biochemical Analysis of Four Such Proteins from Fish Brain. Journal of Neurochemistry, 1985, 45, 63-72.	3.9	26
385	Distribution of protein phosphatases-1? and -1?1 and the D1 dopamine receptor in primate prefrontal cortex: Evidence for discrete populations of spines. Journal of Comparative Neurology, 2001, 440, 261-270.	1.6	26
386	Identifying therapeutic targets by combining transcriptional data with ordinal clinical measurements. Nature Communications, 2017, 8, 623.	12.8	26
387	Nitric oxide regulates synaptic transmission between spiny projection neurons. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17636-17641.	7.1	25
388	WAVE1 in neurons expressing the D1 dopamine receptor regulates cellular and behavioral actions of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1395-1400.	7.1	25
389	Neuronal Localization of Ca2+-dependent Protein Phosphorylation in Brain. Journal of Neurochemistry, 1980, 34, 548-553.	3.9	24
390	Synapsin IIa Bundles Actin Filaments. Journal of Neurochemistry, 1994, 63, 1568-1571.	3.9	24
391	Protein kinase A directly phosphorylates metabotropic glutamate receptor 5 to modulate its function. Journal of Neurochemistry, 2015, 132, 677-686.	3.9	24
392	Ependymal cells-CSF flow regulates stress-induced depression. Molecular Psychiatry, 2021, 26, 7308-7315.	7.9	24
393	Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition. ELife, 2017, 6, .	6.0	24
394	Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution. Journal of Biological Chemistry, 2017, 292, 1462-1476.	3.4	23
395	CK2 regulates 5-HT4 receptor signaling and modulates depressive-like behavior. Molecular Psychiatry, 2018, 23, 872-882.	7.9	23
396	Glutamate regulates adenylate cyclase and guanylate cyclase activities in an isolated membrane preparation from insect muscle. Nature, 1982, 296, 354-356.	27.8	22

#	Article	IF	CITATIONS
397	Nucleotide sequence of a cDNA for the bovine myristoylated alanine-rich C kinase substrate (MARCKS). Nucleic Acids Research, 1989, 17, 3987-3988.	14.5	22
398	Protein Phosphotyrosine in Mouse Brain: Developmental Changes and Regulation by Epidermal Growth Factor, Type I Insulin-Like Growth Factor, and Insulin. Journal of Neurochemistry, 1992, 58, 518-528.	3.9	22
399	Signaling pathways controlling the phosphorylation state of WAVE1, a regulator of actin polymerization. Journal of Neurochemistry, 2010, 114, 182-190.	3.9	22
400	Gleevec shifts APP processing from a β-cleavage to a nonamyloidogenic cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1389-1394.	7.1	22
401	The dentate gyrus in depression. European Journal of Neuroscience, 2021, 53, 39-64.	2.6	22
402	Protein Kinase C-Dependent Dephosphorylation of Tyrosine Hydroxylase Requires the B56δ Heterotrimeric Form of Protein Phosphatase 2A. PLoS ONE, 2011, 6, e26292.	2.5	21
403	ARPP-21, a cyclic AMP-regulated phosphoprotein (Mr = 21,000) enriched in dopamine-innervated brain regions. Amino acid sequence of the site phosphorylated by cyclic AMP in intact cells and kinetic studies of its phosphorylation in vitro. Journal of Biological Chemistry, 1989, 264, 7726-33.	3.4	21
404	A Novel Synaptic Vesicle-Associated Phosphoprotein: SVAPP-120. Journal of Neurochemistry, 1991, 57, 423-430.	3.9	20
405	Norbin. Communicative and Integrative Biology, 2010, 3, 487-490.	1.4	20
406	Cholinergic Neurons of the Medial Septum Are Crucial for Sensorimotor Gating. Journal of Neuroscience, 2019, 39, 5234-5242.	3.6	20
407	Dopamine D1Agonist SKF 38393 Increases the State of Phosphorylation of ARPP-21 in Substantia Nigra. Journal of Neurochemistry, 1993, 60, 1043-1046.	3.9	19
408	δ-COP modulates Aβ peptide formation via retrograde trafficking of APP. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5412-5417.	7.1	19
409	Gene therapy blockade of dorsal striatal p11 improves motor function and dyskinesia in parkinsonian mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1423-1428.	7.1	19
410	A Noncanonical Postsynaptic Transport Route for a GPCR Belonging to the Serotonin Receptor Family. Journal of Neuroscience, 2012, 32, 17998-18008.	3.6	18
411	Smallâ€molecule inducers of Aβâ€42 peptide production share a common mechanism of action. FASEB Journal, 2012, 26, 5115-5123.	0.5	18
412	Regulator of calmodulin signaling knockout mice display anxietyâ€like behavior and motivational deficits. European Journal of Neuroscience, 2012, 35, 300-308.	2.6	18
413	Mapping the physiological and molecular markers of stress and SSRI antidepressant treatment in S100a10 corticostriatal neurons. Molecular Psychiatry, 2020, 25, 1112-1129.	7.9	18
414	Study of the conformation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by fluorescence spectroscopy. Journal of Biological Chemistry, 1993, 268, 24022-31.	3.4	18

#	Article	IF	CITATIONS
415	ON THE REACTIVITY AND MECHANISM OF ACTION OF CYCLIC NUCLEOTIDES. Annals of the New York Academy of Sciences, 1971, 185, 18-26.	3.8	17
416	Inhibitors of protein phosphatase-1. Inhibitor-1 of bovine adipose tissue and a dopamine- and cAMP-regulated phosphoprotein of bovine brain are identical. FEBS Journal, 1989, 180, 143-148.	0.2	17
417	Presenilin 1 phosphorylation regulates amyloid- \hat{l}^2 degradation by microglia. Molecular Psychiatry, 2021, 26, 5620-5635.	7.9	17
418	p11 in Cholinergic Interneurons of the Nucleus Accumbens Is Essential for Dopamine Responses to Rewarding Stimuli. ENeuro, 2018, 5, ENEURO.0332-18.2018.	1.9	17
419	Backbone 1H, 15N, and 13C resonance assignments of inhibitor-2 a protein inhibitor of protein phosphatase-1. Journal of Biomolecular NMR, 2000, 17, 359-360.	2.8	15
420	INCREASED BLOOD PRESSURE AND LOSS OF ANP-INDUCED NATRIURESIS IN MICE LACKING DARPP-32 GENE. Clinical and Experimental Hypertension, 2001, 23, 449-460.	1.3	15
421	Neurotensin regulates DARPP-32 Thr34 phosphorylation in neostriatal neurons by activation of dopamine D1-type receptors. Journal of Neurochemistry, 2002, 81, 325-334.	3.9	14
422	GSAP regulates lipid homeostasis and mitochondrial function associated with Alzheimer's disease. Journal of Experimental Medicine, 2021, 218, .	8.5	14
423	Presence of Protein I, a Phosphoprotein Associated with Synaptic Vesicles, in Cerebellar Granule Cells. Journal of Neurochemistry, 1981, 36, 1627-1631.	3.9	13
424	Presence of calcium/calmodulin-dependent protein Kinase II in Nerve terminals of rat brain. Synapse, 1989, 3, 356-362.	1.2	13
425	Phylogenetically conserved CK-II phosphorylation site of the murine homeodomain protein Hoxb-6. , 1999, 285, 76-84.		13
426	Purification and characterization of PCPP-260: A Purkinje cell-enriched cyclic amp-regulated membrane phosphoprotein of Mr 260,000. Synapse, 1988, 2, 89-96.	1.2	12
427	Ethologically Based Resolution of D2-Like Dopamine Receptor Agonist-versus Antagonist-Induced Behavioral Topography in Dopamine- and Adenosine 3â€2,5â€2-Monophosphate-Regulated Phosphoprotein of 32 kDa "Knockout―Mutants Congenic on the C57BL/6 Genetic Background. Journal of Pharmacology and Experimental Therapeutics 2004 310 1281-1287	2.5	12
428	Role of Dopamine Type 1 Receptors and Dopamine- and cAMP-Regulated Phosphoprotein Mr 32 kDa in Δ ⁹ -Tetrahydrocannabinol–Mediated Induction of ΔFosB in the Mouse Forebrain. Journal of Pharmacology and Experimental Therapeutics, 2015, 354, 316-327.	2.5	12
429	p11 modulates L-DOPA therapeutic effects and dyskinesia via distinct cell types in experimental Parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1429-1434.	7.1	12
430	Brain Permeable Tafamidis Amide Analogs for Stabilizing TTR and Reducing APP Cleavage. ACS Medicinal Chemistry Letters, 2020, 11, 1973-1979.	2.8	12
431	Translational profiling of mouse dopaminoceptive neurons reveals region-specific gene expression, exon usage, and striatal prostaglandin E2 modulatory effects. Molecular Psychiatry, 2022, 27, 2068-2079.	7.9	12
432	Characterization of Rat ARPP-21 mRNA: Sequence Analysis, Tissue Distribution, and Regulation. Journal of Neurochemistry, 1991, 57, 1985-1991.	3.9	11

#	Article	IF	CITATIONS
433	Is myosin phosphatase regulatedin vivoby inhibitor-1? Evidence from inhibitor-1 knockout mice. Journal of Physiology, 2001, 534, 357-366.	2.9	11
434	Localization of dopamine- and cAMP-regulated phosphoprotein-32 and inhibitor-1 in area 9 of Macaca mulatta prefrontal cortex. Neuroscience, 2010, 167, 428-438.	2.3	11
435	Transient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons. PLoS ONE, 2016, 11, e0169044.	2.5	11
436	Lack of a site-specific phosphorylation of Presenilin 1 disrupts microglial gene networks and progenitors during development. PLoS ONE, 2020, 15, e0237773.	2.5	11
437	Identification of Neurensin-2 as a novel modulator of emotional behavior. Molecular Psychiatry, 2021, 26, 2872-2885.	7.9	11
438	Localization of ARPP-90, a major 90 kiloDalton basal ganglion-enriched substrate for cyclic AMP-dependent protein kinase, in striatonigral neurons in the rat brain. Molecular Brain Research, 1989, 5, 149-157.	2.3	10
439	Laminin and Neuropeptide Y Are Increased by Synapsin Transfection in Cultured NG108â€15 Neuroblastoma/Glioma Hybrid Cells. Journal of Neurochemistry, 1995, 64, 2674-2680.	3.9	9
440	Regulation of spinophilin Ser94 phosphorylation in neostriatal neurons involves both DARPP-32-dependent and independent pathways. Journal of Neurochemistry, 2005, 95, 1642-1652.	3.9	9
441	Subcellular distribution of the Rhoâ€GEF Lfc in primate prefrontal cortex: Effect of neuronal activation. Journal of Comparative Neurology, 2008, 508, 927-939.	1.6	9
442	CK1δ over-expressing mice display ADHD-like behaviors, frontostriatal neuronal abnormalities and altered expressions of ADHD-candidate genes. Molecular Psychiatry, 2020, 25, 3322-3336.	7.9	8
443	Epigenetic Mechanisms of Mental Retardation. , 2011, 67, 125-146.		8
444	Activation of the p11/SMARCA3/Neurensin-2 pathway in parvalbumin interneurons mediates the response to chronic antidepressants. Molecular Psychiatry, 2021, 26, 3350-3362.	7.9	7
445	Calcium/Diacylglycerol-Dependent Protein Kinase and Its Major 87-Kilodalton Protein Substrate Are Differentially Distributed in Rat Basal Ganglia. Journal of Neurochemistry, 1989, 53, 1199-1202.	3.9	6
446	Response to Comment on "Diverse Psychotomimetics Act Through a Common Signaling Pathway". Science, 2004, 305, 180d-180d.	12.6	6
447	Knockout of <i>p11</i> attenuates the acquisition and reinstatement of cocaine conditioned place preference in male but not in female mice. Synapse, 2016, 70, 293-301.	1.2	6
448	Reactive Dopamine Leads to Triple Trouble in Nigral Neurons. Biochemistry, 2017, 56, 6409-6410.	2.5	6
449	Modulation of amyloid precursor protein cleavage by γ-secretase activating protein through phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122292119.	7.1	5
450	An Analysis of Postmortem Brain Samples from 32 Alcoholic and Nonalcoholic Individuals for Protein III, a Neuronal Phosphoprotein. Alcoholism: Clinical and Experimental Research, 1989, 13, 673-679.	2.4	4

#	Article	IF	CITATIONS
451	Decrease in phorbol ester-induced potentiation of noradrenaline release in synapsin I-deficient mice. , 2000, 36, 114-119.		4
452	p11 regulates the surface localization of mCluR5. Molecular Psychiatry, 2015, 20, 1485-1485.	7.9	4
453	A Pentacyclic Triterpene from <i>Ligustrum lucidum</i> Targets γ-Secretase. ACS Chemical Neuroscience, 2020, 11, 2827-2835.	3.5	4
454	ARPP-16/ARPP-19: a highly conserved family of cAMP-regulated phosphoproteins. Journal of Neurochemistry, 2008, 77, 229-238.	3.9	3
455	Regulation of Striatal Signaling by Protein Phosphatases. Handbook of Behavioral Neuroscience, 2016, , 583-607.	0.7	3
456	Studies of the physiological role of specific neuronal phosphoproteins. Advances in Second Messenger and Phosphoprotein Research, 1988, 21, 133-46.	4.5	3
457	General assay for phosphoproteins in cerebrospinal fluid: A candidate market for paraneoplastic cerebellar degeneration. Annals of Neurology, 1990, 28, 829-833.	5.3	2
458	DARPP-32 Mediates the Actions of Multiple Drugs of Abuse. , 2008, , 3-16.		2
459	Molecular evolution of the synapsin gene family. The Journal of Experimental Zoology, 1999, 285, 360-377.	1.4	2
460	Cerebellar neurodegeneration in the absence of microRNAs. Journal of Cell Biology, 2007, 178, i5-i5.	5.2	1
461	A conversation with Paul Greengard. Journal of Clinical Investigation, 2013, 123, 937-938.	8.2	1
462	Control of protein phosphate 1 in the dendrite. Biochemical Society Transactions, 1999, 27, A72-A72.	3.4	0
463	DIFFERENTIAL LOCALIZATION OF PROTEIN PHOSPHATASE-1 (PP1) ISOFORMS AT AXOSPINOUS SYNAPSES: RESPONSE TO HALOPERIDOL AND COCAINE TREATMENT. Schizophrenia Research, 2008, 102, 63.	2.0	0
464	Hormonal control of cerebral amyloidogenesis in Alzheimer's diseases. Journal of Neurochemistry, 2008, 81, 82-82.	3.9	0
465	Signal Transduction by Dopamine D1 Receptors. Handbook of Experimental Pharmacology, 2002, , 235-255.	1.8	0
466	Molecular definition of CNS cell types and their physiologic responses in health and disease FASEB Journal, 2007, 21, A201.	0.5	0
467	Principles of Signal Transduction. , 2011, , 41-65.		0
468	Neurabin scaffolding of adenosine receptor and RGS4 regulates antiâ€seizure effect of endogenous adenosine. FASEB Journal, 2012, 26, 838.4.	0.5	0

#	Article	IF	CITATIONS
469	Versatile selective kinase inhibitors: Chemistry and biology of indirubins. Planta Medica, 2012, 78, .	1.3	0
470	Principles of Signal Transduction. , 2013, , 39-63.		0
471	Regulatory Agent: <i>Cyclic AMP</i> . G. Alan Robison, Reginald W. Butcher, and Earl W. Sutherland. With contributions by Th. Posternak and Joel G. Hardman. Academic Press, New York, 1971. xii, 532 pp., illus. \$17.50 Science, 1972, 175, 402-403.	12.6	0