Magdalena SÅ, owik-Borowiec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4519763/publications.pdf Version: 2024-02-01

Magdalena

#	Article	IF	CITATIONS
1	Simultaneous Determination of Multi-Class Pesticide Residues and PAHs in Plant Material and Soil Samples Using the Optimized QuEChERS Method and Tandem Mass Spectrometry Analysis. Molecules, 2022, 27, 2140.	3.8	14
2	Influence of <i>Bacillus Subtilis</i> Fermentation on Content of Selected Macronutrients in Seeds and Beans. Acta Universitatis Cibiniensis Series E: Food Technology, 2022, 26, 123-138.	0.4	2
3	Selected food processing techniques as a factor for pesticide residue removal in apple fruit. Environmental Science and Pollution Research, 2020, 27, 2361-2373.	5.3	30
4	Influence of a Commercial Biological Fungicide containing Trichoderma harzianum Rifai T-22 on Dissipation Kinetics and Degradation of Five Herbicides in Two Types of Soil. Molecules, 2020, 25, 1391.	3.8	6
5	The difference in dissipation of clomazone and metazachlor in soil under field and laboratory conditions and their uptake by plants. Scientific Reports, 2020, 10, 3747.	3.3	7
6	Influence of Bacillus subtilis and Trichoderma harzianum on Penthiopyrad Degradation under Laboratory and Field Studies. Molecules, 2020, 25, 1421.	3.8	14
7	Consumer health risk to pesticide residues in Salvia officinalis L. and its infusions. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019, 54, 14-19.	1.5	7
8	Multiresidue Analysis of Pesticides in Wine and Grape Using Gas Chromatography with Microelectron Capture and Nitrogen–Phosphorus Detection. Food Analytical Methods, 2018, 11, 3516-3530.	2.6	18
9	Dissipation of chlorantraniliprole, chlorpyrifos-methyl and indoxacarb—insecticides used to control codling moth (Cydia Pomonella L.) and leafrollers (Tortricidae) in apples for production of baby food. Environmental Science and Pollution Research, 2017, 24, 12128-12135.	5.3	26
10	Occurrence and estimation of pesticide residues in edible minor crops in southeastern Poland in 2013–2014. Environmental Monitoring and Assessment, 2016, 188, 386.	2.7	2
11	Dissipation kinetics of alpha-cypermethrin and lambda-cyhalothrin residues in aboveground part of white mustard (<i>Sinapis alba</i> L.). Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 628-633.	1.5	4
12	QuEChERS-Based Methods for the Determination of Pesticide Residues in a Dill Using Gas Chromatography with Electron Capture and Nitrogen Phosphorus Detection. Food Analytical Methods, 2016, 9, 1562-1572.	2.6	8
13	Pesticide residues in raw agricultural products from the south-eastern region of Poland and the acute risk assessment. Roczniki Panstwowego Zakladu Higieny, 2016, 67, 237-45.	0.7	5
14	Validation of a QuEChERS-Based Gas Chromatographic Method for Multiresidue Pesticide Analysis in Fresh Peppermint Including Studies of Matrix Effects. Food Analytical Methods, 2015, 8, 1413-1424.	2.6	17
15	Evaluation of pesticide residues in fruits and vegetables from the region of south-eastern Poland. Food Control, 2015, 48, 137-142.	5.5	115
16	Gas chromatographic determination of pesticide residues in white mustard. Food Chemistry, 2015, 173, 997-1005.	8.2	23
17	Consumer exposure to pesticide residues in apples from the region of south-eastern Poland. Environmental Monitoring and Assessment, 2013, 185, 8873-8878.	2.7	20
18	Analysis of Pesticide Residues in Fresh Peppermint, Mentha piperita L., Using the Quick Easy Cheap Effective Rugged and Safe Method (QuEChERS) Followed by Gas Chromatography with Electron Capture and Nitrogen Phosphorus Detection. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 633-637.	2.7	19