Joshua T Dudman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4519382/publications.pdf Version: 2024-02-01

Ιοςητιν Τ Οπομανι

#	Article	IF	CITATIONS
1	Motor cortical output for skilled forelimb movement is selectively distributed across projection neuron classes. Science Advances, 2022, 8, eabj5167.	10.3	33
2	Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science, 2021, 372, .	12.6	467
3	Dissociable contributions of phasic dopamine activity to reward and prediction. Cell Reports, 2021, 36, 109684.	6.4	15
4	In Vivo Optogenetics with Stimulus Calibration. Methods in Molecular Biology, 2021, 2188, 273-283.	0.9	6
5	Basal Ganglia Circuits for Action Specification. Annual Review of Neuroscience, 2020, 43, 485-507.	10.7	55
6	Learning from Action: Reconsidering Movement Signaling in Midbrain Dopamine Neuron Activity. Neuron, 2019, 104, 63-77.	8.1	97
7	Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain. Cell, 2019, 179, 268-281.e13.	28.9	352
8	A repeated molecular architecture across thalamic pathways. Nature Neuroscience, 2019, 22, 1925-1935.	14.8	132
9	High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo. ELife, 2019, 8, .	6.0	75
10	A Proposed Circuit Computation in Basal Ganglia: Historyâ€Dependent Gain. Movement Disorders, 2018, 33, 704-716.	3.9	38
11	The timing of action determines reward prediction signals in identified midbrain dopamine neurons. Nature Neuroscience, 2018, 21, 1563-1573.	14.8	161
12	Expanding the Optogenetics Toolkit by Topological Inversion of Rhodopsins. Cell, 2018, 175, 1131-1140.e11.	28.9	30
13	Deconstructing behavioral neuropharmacology with cellular specificity. Science, 2017, 356, .	12.6	99
14	Desensitized D2 autoreceptors are resistant to trafficking. Scientific Reports, 2017, 7, 4379.	3.3	42
15	Opponent and bidirectional control of movement velocity in the basal ganglia. Nature, 2016, 533, 402-406.	27.8	221
16	A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron, 2016, 92, 372-382.	8.1	1,007
17	The basal ganglia: from motor commands to the control of vigor. Current Opinion in Neurobiology, 2016, 37, 158-166.	4.2	203

2

Joshua T Dudman

#	Article	IF	CITATIONS
19	Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomedical Optics Express, 2015, 6, 4546.	2.9	103
20	A Specific Component of the Evoked Potential Mirrors Phasic Dopamine Neuron Activity during Conditioning. Journal of Neuroscience, 2015, 35, 10451-10459.	3.6	4
21	Dopamine Is Required for the Neural Representation and Control of Movement Vigor. Cell, 2015, 162, 1418-1430.	28.9	241
22	Precise spatial coding is preserved along the longitudinal hippocampal axis. Hippocampus, 2014, 24, 1533-1548.	1.9	85
23	RIVETS: A Mechanical System for In Vivo and In Vitro Electrophysiology and Imaging. PLoS ONE, 2014, 9, e89007.	2.5	57
24	The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output. ELife, 2014, 3, e02397.	6.0	51
25	Mice infer probabilistic models for timing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17154-17159.	7.1	23
26	Neural signals of extinction in the inhibitory microcircuit of the ventral midbrain. Nature Neuroscience, 2013, 16, 71-78.	14.8	52
27	Inputs to the Dorsal Striatum of the Mouse Reflect the Parallel Circuit Architecture of the Forebrain. Frontiers in Neuroanatomy, 2010, 4, 147.	1.7	127
28	Stochastically Gating Ion Channels Enable Patterned Spike Firing through Activity-Dependent Modulation of Spike Probability. PLoS Computational Biology, 2009, 5, e1000290.	3.2	37
29	HCN1 Channels Control Resting and Active Integrative Properties of Stellate Cells from Layer II of the Entorhinal Cortex. Journal of Neuroscience, 2007, 27, 12440-12451.	3.6	175
30	A Role for Synaptic Inputs at Distal Dendrites: Instructive Signals for Hippocampal Long-Term Plasticity. Neuron, 2007, 56, 866-879.	8.1	175
31	HCN1 Channels Constrain Synaptically EvokedÂCa2+ Spikes in Distal Dendrites of CA1 Pyramidal Neurons. Neuron, 2007, 56, 1076-1089.	8.1	186
32	Making the Grade with Models of Persistent Activity. Neuron, 2006, 49, 649-651.	8.1	0
33	Antipsychotic drugs elevate mRNA levels of presynaptic proteins in the frontal cortex of the rat. Biological Psychiatry, 2005, 57, 1041-1051.	1.3	71
34	Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors. Journal of Neuroscience, 2005, 25, 9027-9036.	3.6	220
35	Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. Journal of Neurochemistry, 2004, 87, 922-934.	3.9	147
36	Individual Differences in Trait Anxiety Predict the Response of the Basolateral Amygdala to Unconsciously Processed Fearful Faces. Neuron, 2004, 44, 1043-1055.	8.1	594

Joshua T Dudman

#	ARTICLE	IF	CITATIONS
37	L-type Ca2+ channel blockers promote Ca2+ accumulation when dopamine receptors are activated in striatal neurons. Molecular Brain Research, 2004, 131, 65-72.	2.3	11
38	The Hyperpolarization-Activated HCN1 Channel Is Important for Motor Learning and Neuronal Integration by Cerebellar Purkinje Cells. Cell, 2003, 115, 551-564.	28.9	287
39	Striatal proenkephalin gene induction: coordinated regulation by cyclic AMP and calcium pathways. Molecular Brain Research, 2003, 115, 157-161.	2.3	6