Uwe R Kortshagen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/451831/publications.pdf

Version: 2024-02-01

261 papers

14,352 citations

19608 61 h-index 22764

268 all docs 268 docs citations

268 times ranked 11190 citing authors

g-index

#	Article	IF	CITATIONS
1	Band Gap Tuning of Films of Undoped ZnO Nanocrystals by Removal of Surface Groups. Nanomaterials, 2022, 12, 565.	1.9	7
2	Plasma-Synthesized Nitrogen-Doped Titanium Dioxide Nanoparticles With Tunable Visible Light Absorption and Photocatalytic Activity. , 2022, $1,\ldots$		1
3	Plasma diagnostics and modeling of lithium-containing plasmas. Journal Physics D: Applied Physics, 2022, 55, 254001.	1.3	O
4	Distance-dependent resonance energy transfer in alkyl-terminated Si nanocrystal solids. Journal of Chemical Physics, 2022, 156, 124705.	1.2	0
5	Particle trapping, size-filtering, and focusing in the nonthermal plasma synthesis of sub-10 nanometer particles. Journal Physics D: Applied Physics, 2022, 55, 235202.	1.3	7
6	Water-Soluble Luminescent Silicon Nanocrystals by Plasma-Induced Acrylic Acid Grafting and PEGylation. ACS Applied Bio Materials, 2022, 5, 105-112.	2.3	5
7	Broadband, Angle- and Polarization-Invariant Antireflective and Absorbing Films by a Scalable Synthesis of Monodisperse Silicon Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23624-23636.	4.0	5
8	Hopping charge transport in hydrogenated amorphous silicon–germanium alloy thin films. Journal of Applied Physics, 2022, 131, .	1.1	1
9	Predicting plasma conditions necessary for synthesis of γ-Al ₂ O ₃ nanocrystals. Nanoscale, 2021, 13, 11387-11395.	2.8	4
	Humoscale, 2021, 10, 11007 11070		
10	Plasma-driven solution electrolysis. Journal of Applied Physics, 2021, 129, .	1.1	58
10		1.1	58
	Plasma-driven solution electrolysis. Journal of Applied Physics, 2021, 129, . Inductively coupled nonthermal plasma synthesis of aluminum nanoparticles. Nanotechnology, 2021,		
11	Plasma-driven solution electrolysis. Journal of Applied Physics, 2021, 129, . Inductively coupled nonthermal plasma synthesis of aluminum nanoparticles. Nanotechnology, 2021, 32, . Evaluating Tandem Luminscent Solar Concentrator Performance Based on Luminophore Selection. ,		10
11 12	Plasma-driven solution electrolysis. Journal of Applied Physics, 2021, 129, . Inductively coupled nonthermal plasma synthesis of aluminum nanoparticles. Nanotechnology, 2021, 32, . Evaluating Tandem Luminscent Solar Concentrator Performance Based on Luminophore Selection. , 2021, , . Material-dependent submicrometer particle trapping in capacitively-coupled plasma sheaths in an	1.3	10
11 12 13	Plasma-driven solution electrolysis. Journal of Applied Physics, 2021, 129, . Inductively coupled nonthermal plasma synthesis of aluminum nanoparticles. Nanotechnology, 2021, 32, . Evaluating Tandem Luminscent Solar Concentrator Performance Based on Luminophore Selection. , 2021, , . Material-dependent submicrometer particle trapping in capacitively-coupled plasma sheaths in an intermediate collision regime. Plasma Sources Science and Technology, 2021, 30, 095014. Nonthermal plasma synthesized silicon-silicon nitride core–shell nanocrystals with enhanced	1.3	10
11 12 13	Plasma-driven solution electrolysis. Journal of Applied Physics, 2021, 129, . Inductively coupled nonthermal plasma synthesis of aluminum nanoparticles. Nanotechnology, 2021, 32, . Evaluating Tandem Luminscent Solar Concentrator Performance Based on Luminophore Selection. , 2021, , . Material-dependent submicrometer particle trapping in capacitively-coupled plasma sheaths in an intermediate collision regime. Plasma Sources Science and Technology, 2021, 30, 095014. Nonthermal plasma synthesized silicon-silicon nitride core–shell nanocrystals with enhanced photoluminescence. Journal Physics D: Applied Physics, 2021, 54, 504005.	1.3 1.3	10 1 1 3
11 12 13 14	Plasma-driven solution electrolysis. Journal of Applied Physics, 2021, 129, . Inductively coupled nonthermal plasma synthesis of aluminum nanoparticles. Nanotechnology, 2021, 32, . Evaluating Tandem Luminscent Solar Concentrator Performance Based on Luminophore Selection. , 2021, , . Material-dependent submicrometer particle trapping in capacitively-coupled plasma sheaths in an intermediate collision regime. Plasma Sources Science and Technology, 2021, 30, 095014. Nonthermal plasma synthesized silicon-silicon nitride core–shell nanocrystals with enhanced photoluminescence. Journal Physics D: Applied Physics, 2021, 54, 504005. Observation of suppressed diffuson and propagon thermal conductivity of hydrogenated amorphous silicon films. Nanoscale Advances, 2021, 4, 87-94. Bilayer Luminescent Solar Concentrators with Enhanced Absorption and Efficiency for Agrivoltaic	1.3 1.3 2.2	10 1 1 3

#	Article	IF	CITATIONS
19	Probing Dopant Locations in Silicon Nanocrystals via High Energy X-ray Diffraction and Reverse Monte Carlo Simulation. Nano Letters, 2020, 20, 852-859.	4.5	7
20	Aluminum Oxide Nanoparticle Films Deposited from a Nonthermal Plasma: Synthesis, Characterization, and Crystallization. ACS Omega, 2020, 5, 24754-24761.	1.6	23
21	Nonthermal Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Molybdenum Disulfide. ACS Omega, 2020, 5, 21853-21861.	1.6	11
22	Plasmonic nanocomposites of zinc oxide and titanium nitride. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 042404.	0.9	4
23	Bright Silicon Nanocrystals from a Liquid Precursor: Quasi-Direct Recombination with High Quantum Yield. ACS Nano, 2020, 14, 3858-3867.	7.3	43
24	Size and structural characterization of Si nanocrystal aggregates from a low pressure nonthermal plasma reactor. Powder Technology, 2020, 373, 164-173.	2.1	24
25	Nanocrystalâ€based inorganic nanocomposites: A new paradigm for plasmaâ€produced optoelectronic thin films. Plasma Processes and Polymers, 2020, 17, 2000002.	1.6	3
26	Confined yet free to go. Nature Materials, 2020, 19, 260-261.	13.3	0
27	Ion attachment rates and collection forces on dust particles in a plasma sheath with finite ion inertia and mobility. Physical Review E, 2020, 102, 063212.	0.8	2
28	Thermal transport in ZnO nanocrystal networks synthesized by nonthermal plasma. Physical Review Materials, 2020, 4, .	0.9	4
29	Bacterial Toxicity of Germanium Nanocrystals Induced by Doping with Boron and Phosphorus. ACS Applied Nano Materials, 2019, 2, 4744-4755.	2.4	7
30	Metal-insulator transition in a semiconductor nanocrystal network. Science Advances, 2019, 5, eaaw1462.	4.7	16
31	Aerosol-Phase Synthesis and Processing of Luminescent Silicon Nanocrystals. Chemistry of Materials, 2019, 31, 8451-8458.	3.2	20
32	Determination of nanoparticle collision cross section distribution functions in low pressure plasma synthesis reactors via ion mobility spectrometry. Nano Futures, 2019, 3, 015002.	1.0	10
33	High temperature thermoelectric properties of laser sintered thin films of phosphorous-doped silicon-germanium nanoparticles. AIP Advances, 2019, 9, .	0.6	9
34	Synthesis of PEG-grafted boron doped Si nanocrystals. Journal of Chemical Physics, 2019, 151, 211103.	1.2	5
35	Silicon Quantum Dot–Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentrators. ACS Photonics, 2019, 6, 170-180.	3.2	58
36	Thermodynamic Driving Force in the Spontaneous Formation of Inorganic Nanoparticle Solutions. Nano Letters, 2018, 18, 1888-1895.	4.5	27

3

#	Article	IF	CITATIONS
37	Measuring Dopant-Modulated Vibrational Energy Transfer over the Surface of Silicon Nanoparticles by 2D-IR Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 8693-8698.	1.5	3
38	Obtaining Structural Parameters from STEM–EDX Maps of Core/Shell Nanocrystals for Optoelectronics. ACS Applied Nano Materials, 2018, 1, 989-996.	2.4	15
39	Tuning Nanocrystal Surface Depletion by Controlling Dopant Distribution as a Route Toward Enhanced Film Conductivity. Nano Letters, 2018, 18, 2870-2878.	4.5	45
40	Quasi continuous wave laser sintering of Si-Ge nanoparticles for thermoelectrics. Journal of Applied Physics, 2018, 123, 094301.	1.1	10
41	Comparative toxicity assessment of novel Si quantum dots and their traditional Cd-based counterparts using bacteria models <i>Shewanella oneidensis</i> Environmental Science: Nano, 2018, 5, 1890-1901.	2.2	37
42	Variable range hopping conduction in ZnO nanocrystal thin films. Nanotechnology, 2018, 29, 415202.	1.3	9
43	Toxicity Evaluation of Boron- and Phosphorus-Doped Silicon Nanocrystals toward Shewanella oneidensis MR-1. ACS Applied Nano Materials, 2018, 1, 4884-4893.	2.4	14
44	Nonthermal Plasma Synthesis of Titanium Nitride Nanocrystals with Plasmon Resonances at Near-Infrared Wavelengths Relevant to Photothermal Therapy. ACS Applied Nano Materials, 2018, 1, 2869-2876.	2.4	43
45	Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nature Photonics, 2017, 11, 177-185.	15.6	319
46	Abrupt Size Partitioning of Multimodal Photoluminescence Relaxation in Monodisperse Silicon Nanocrystals. ACS Nano, 2017, 11, 1597-1603.	7.3	34
47	Nonthermal Plasma Synthesis of Core/Shell Quantum Dots: Strained Ge/Si Nanocrystals. ACS Applied Materials & Dots: Nanocrystals. ACS Applied Materials & Dots: Strained Ge/Si Nanocrystals &	4.0	42
48	Doped Silicon Nanocrystal Plasmonics. ACS Photonics, 2017, 4, 963-970.	3.2	43
49	Elemental Distribution Analysis of Core/Shell Nanocrystals with STEM/EDX. Microscopy and Microanalysis, 2017, 23, 1904-1905.	0.2	0
50	Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals. Nano Letters, 2017, 17, 6409-6414.	4.5	10
51	The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal Physics D: Applied Physics, 2017, 50, 323001.	1.3	710
52	Near-Infrared Plasmonic Copper Nanocups Fabricated by Template-Assisted Magnetron Sputtering. ACS Photonics, 2017, 4, 2881-2890.	3.2	14
53	ZnO Nanocrystal Networks Near the Insulator–Metal Transition: Tuning Contact Radius and Electron Density with Intense Pulsed Light. Nano Letters, 2017, 17, 4634-4642.	4.5	30
54	Silicon nanocrystals from plasma synthesis. Series in Materials Science and Engineering, 2017, , 271-292.	0.1	0

#	Article	IF	CITATIONS
55	Laser light scattering from silicon particles generated in an argon diluted silane plasma. Journal Physics D: Applied Physics, 2016, 49, 085203.	1.3	8
56	Influence of the surface termination on the light emission of crystalline silicon nanoparticles. Nanotechnology, 2016, 27, 325703.	1.3	9
57	Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals. Journal of Applied Physics, 2016, 119, 243302.	1.1	8
58	Controlled synthesis of germanium nanoparticles by nonthermal plasmas. Applied Physics Letters, 2016, 108, .	1.5	12
59	A New Generation of Primary Luminescent Thermometers Based on Silicon Nanoparticles and Operating in Different Media. Particle and Particle Systems Characterization, 2016, 33, 740-748.	1.2	29
60	Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chemical Reviews, 2016, 116, 11061-11127.	23.0	309
61	Enhancing Silicon Nanocrystal Photoluminescence through Temperature and Microstructure. Journal of Physical Chemistry C, 2016, 120, 18909-18916.	1.5	21
62	Quantification of Elemental Distribution in Spherical Core-Shell Nanoparticles Measured by STEM-EDX. Microscopy and Microanalysis, 2016, 22, 128-129.	0.2	1
63	Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment. Journal Physics D: Applied Physics, 2016, 49, 08LT02.	1.3	14
64	Broadband Absorbing Exciton–Plasmon Metafluids with Narrow Transparency Windows. Nano Letters, 2016, 16, 1472-1477.	4.5	23
65	Metal–insulator transition in films of doped semiconductor nanocrystals. Nature Materials, 2016, 15, 299-303.	13.3	96
66	Generation of hot carrier population in colloidal silicon quantum dots for high-efficiency photovoltaics. Solar Energy Materials and Solar Cells, 2016, 145, 391-396.	3.0	19
67	Nonthermal Plasma Synthesis of Nanocrystals: Fundamentals, Applications, and Future Research Needs. Plasma Chemistry and Plasma Processing, 2016, 36, 73-84.	1.1	37
68	Self-assembly of plasmonic/excitonic silicon nanocrystals into photonic crystals. MRS Communications, 2015, 5, 573-577.	0.8	0
69	Tunability Limit of Photoluminescence in Colloidal Silicon Nanocrystals. Scientific Reports, 2015, 5, 12469.	1.6	68
70	Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement. Nano Letters, 2015, 15, 8162-8169.	4.5	62
71	Special issue on plasma synthesis of nanoparticles. Journal Physics D: Applied Physics, 2015, 48, 310301.	1.3	2
72	Requirements for plasma synthesis of nanocrystals at atmospheric pressures. Journal Physics D: Applied Physics, 2015, 48, 035205.	1.3	34

#	Article	IF	Citations
73	Reply to "Comment on â€~Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer'― ACS Photonics, 2015, 2, 456-458.	3.2	6
74	Langmuir probe measurements of electron energy probability functions in dusty plasmas. Journal Physics D: Applied Physics, 2015, 48, 105204.	1.3	44
75	Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus. Nano Letters, 2015, 15, 5597-5603.	4.5	130
76	Accurate determination of the size distribution of Si nanocrystals from PL spectra. RSC Advances, 2015, 5, 55119-55125.	1.7	13
77	Surface Structure and Silicon Nanocrystal Photoluminescence: The Role of Hypervalent Silyl Groups. Journal of Physical Chemistry C, 2015, 119, 26683-26691.	1.5	24
78	Sizeâ€dependent evolution of phonon confinement in colloidal Si nanoparticles. Journal of Raman Spectroscopy, 2015, 46, 1110-1116.	1.2	9
79	Nonthermal plasma synthesis of metal sulfide nanocrystals from metalorganic vapor and elemental sulfur. Journal Physics D: Applied Physics, 2015, 48, 314004.	1.3	21
80	Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates. ACS Nano, 2015, 9, 9772-9782.	7.3	37
81	Photostability of thermally-hydrosilylated silicon quantum dots. RSC Advances, 2015, 5, 103822-103828.	1.7	18
82	Boron- and phosphorus-doped silicon germanium alloy nanocrystalsâ€"Nonthermal plasma synthesis and gas-phase thin film deposition. APL Materials, 2014, 2, .	2.2	17
83	UV and air stability of high-efficiency photoluminescent silicon nanocrystals. Applied Surface Science, 2014, 323, 54-58.	3.1	16
84	High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas. Nature Communications, 2014, 5, 5822.	5.8	77
85	Influence of Size Purification and Self-Assembly on the Photoluminescence of Silicon Nanocrystal Ensembles. ECS Transactions, 2014, 61, 199-204.	0.3	0
86	Quantum confinement in mixed phase silicon thin films grown by co-deposition plasma processing. Solar Energy Materials and Solar Cells, 2014, 129, 7-12.	3.0	8
87	Controlled Doping of Silicon Nanocrystals Investigated by Solution-Processed Field Effect Transistors. ACS Nano, 2014, 8, 5650-5656.	7.3	78
88	Plasma-induced crystallization of silicon nanoparticles. Journal Physics D: Applied Physics, 2014, 47, 075202.	1.3	83
89	Plasma synthesis of stoichiometric Cu2S nanocrystals stabilized by oleylamine. Chemical Communications, 2014, 50, 8346.	2.2	18
90	Phase separation and the †coffee-ring' effect in polymer†nanocrystal mixtures. Soft Matter, 2014, 10, 1665.	1.2	20

#	Article	IF	Citations
91	Carrier Transport in Films of Alkyl-Ligand-Terminated Silicon Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 19580-19588.	1.5	32
92	Silicon Nanocrystals at Elevated Temperatures: Retention of Photoluminescence and Diamond Silicon to \hat{l}^2 -Silicon Carbide Phase Transition. ACS Nano, 2014, 8, 9219-9223.	7.3	20
93	Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer. ACS Photonics, 2014, 1, 960-967.	3.2	31
94	Nanoparticles: Highly Luminescent ZnO Quantum Dots Made in a Nonthermal Plasma (Adv. Funct.) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5
95	High Quantum Yield Dual Emission from Gas-Phase Grown Crystalline Si Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 10375-10383.	1.5	24
96	Highly Luminescent ZnO Quantum Dots Made in a Nonthermal Plasma. Advanced Functional Materials, 2014, 24, 1988-1993.	7.8	80
97	Strength and Plasticity of H- and Oxide-Terminated Cubic Si Nanocrystals. Microscopy and Microanalysis, 2014, 20, 1460-1461.	0.2	0
98	Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals. Nature Communications, 2013, 4, 2197.	5.8	107
99	Tunable Band Gap Emission and Surface Passivation of Germanium Nanocrystals Synthesized in the Gas Phase. Journal of Physical Chemistry Letters, 2013, 4, 3392-3396.	2.1	45
100	Phosphorus-Doped Silicon Nanocrystals Exhibiting Mid-Infrared Localized Surface Plasmon Resonance. Nano Letters, 2013, 13, 1317-1322.	4. 5	165
101	Effects of Water Adsorption and Surface Oxidation on the Electrical Conductivity of Silicon Nanocrystal Films. Journal of Physical Chemistry C, 2013, 117, 4211-4218.	1.5	23
102	Temperature Dependent Photoluminescence of Size-Purified Silicon Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4233-4238.	4.0	39
103	Propagating Nanocavity-Enhanced Rapid Crystallization of Silicon Thin Films. Nano Letters, 2013, 13, 5735-5739.	4.5	4
104	Properties of nonthermal capacitively coupled plasmas generated in narrow quartz tubes for synthesis of silicon na-noparticles. , 2013, , .		0
105	Analytical STEM Study of P-Doped Silicon Nanocrystals Exhibiting Mid-Infrared Localized Surface Plasmon Resonance. Microscopy and Microanalysis, 2013, 19, 1508-1509.	0.2	1
106	On the Origin of Efficient Photoluminescence in Silicon Nanocrystals. , 2013, , .		1
107	Environmental photostability of SF ₆ -etched silicon nanocrystals. Nanotechnology, 2012, 23, 395205.	1.3	6
108	Absolute absorption cross sections of ligand-free colloidal germanium nanocrystals. Applied Physics Letters, 2012, 100, .	1.5	21

#	Article	IF	Citations
109	Freestanding silicon nanocrystals with extremely low defect content. Physical Review B, 2012, 86, .	1.1	21
110	The energy distribution function of ions impinging on nanoparticles in a collisional low-pressure plasma. Plasma Sources Science and Technology, 2012, 21, 035002.	1.3	5
111	Hybrid solar cells from MDMO-PPV and silicon nanocrystals. Nanoscale, 2012, 4, 3963.	2.8	12
112	Ensemble Brightening and Enhanced Quantum Yield in Size-Purified Silicon Nanocrystals. ACS Nano, 2012, 6, 7389-7396.	7.3	92
113	The 2012 Plasma Roadmap. Journal Physics D: Applied Physics, 2012, 45, 253001.	1.3	511
114	On the Origin of Photoluminescence in Silicon Nanocrystals: Pressure-Dependent Structural and Optical Studies. Nano Letters, 2012, 12, 4200-4205.	4.5	133
115	An All-Gas-Phase Approach for the Fabrication of Silicon Nanocrystal Light-Emitting Devices. Nano Letters, 2012, 12, 2822-2825.	4.5	66
116	Nanocrystal Inks without Ligands: Stable Colloids of Bare Germanium Nanocrystals. Nano Letters, 2011, 11, 2133-2136.	4.5	44
117	High-Efficiency Silicon Nanocrystal Light-Emitting Devices. Nano Letters, 2011, 11, 1952-1956.	4.5	337
118	Plasma production of nanodevice-grade semiconductor nanocrystals. Journal Physics D: Applied Physics, 2011, 44, 174009.	1.3	15
119	Quantum confinement in germanium nanocrystal thin films. Physica Status Solidi - Rapid Research Letters, 2011, 5, 110-112.	1.2	14
120	Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals. Nanoscale Research Letters, 2011, 6, 68.	3.1	25
121	Routes to Achieving High Quantum Yield Luminescence from Gasâ€Phaseâ€Produced Silicon Nanocrystals. Advanced Functional Materials, 2011, 21, 4042-4046.	7.8	74
122	Photoluminescence: Routes to Achieving High Quantum Yield Luminescence from Gasâ€Phaseâ€Produced Silicon Nanocrystals (Adv. Funct. Mater. 21/2011). Advanced Functional Materials, 2011, 21, 4041-4041.	7.8	1
123	Oxidation of freestanding silicon nanocrystals probed with electron spin resonance of interfacial dangling bonds. Physical Review B, 2011, 83, .	1.1	63
124	Separation Control Using Plasma Actuators: Steady Flow in Low Pressure Turbines. , 2011, , .		7
125	Opto-electronic properties of co-deposited mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films. Materials Research Society Symposia Proceedings, 2011, 1321, 337.	0.1	О
126	Silicon nanocrystals based light emitting diodes integrated using all inorganic metal oxides as the charge transport layers. Proceedings of SPIE, 2010, , .	0.8	0

#	Article	IF	CITATIONS
127	Seed-Induced Crystallization of Amorphous Silicon for the Formation of Large-Grain Poly-Crystalline Silicon. , $2010, \ldots$		O
128	Heat transferâ€"A review of 2004 literature. International Journal of Heat and Mass Transfer, 2010, 53, 4343-4396.	2.5	50
129	A Silicon Nanocrystal Schottky Junction Solar Cell produced from Colloidal Silicon Nanocrystals. Nanoscale Research Letters, 2010, 5, 1253-1256.	3.1	46
130	Optimization of Si NC/P3HT Hybrid Solar Cells. Advanced Functional Materials, 2010, 20, 2157-2164.	7.8	125
131	Heat transfer—A review of 2005 literature. International Journal of Heat and Mass Transfer, 2010, 53, 4397-4447.	2.5	85
132	A flexible method for depositing dense nanocrystal thin films: impaction of germanium nanocrystals. Nanotechnology, 2010, 21, 335302.	1.3	72
133	Optical Absorption in Co-Deposited Mixed-Phase Hydrogenated Amorphous/Nanocrystalline Silicon Thin Films. Materials Research Society Symposia Proceedings, 2010, 1245, 1.	0.1	2
134	Silicon and Germanium Nanocrystal Inks for Low-Cost Solar Cells. , 2010, , .		1
135	Charging, Coagulation, and Heating Model of Nanoparticles in a Low-Pressure Plasma Accounting for Ion–Neutral Collisions. IEEE Transactions on Plasma Science, 2010, 38, 803-809.	0.6	23
136	Hybrid Silicon Nanocrystalâ^'Organic Light-Emitting Devices for Infrared Electroluminescence. Nano Letters, 2010, 10, 1154-1157.	4.5	132
137	Germanium and Silicon Nanocrystal Thin-Film Field-Effect Transistors from Solution. Nano Letters, 2010, 10, 2661-2666.	4.5	119
138	Plasma Actuator Simulation: Force Contours and Dielectric Charging Characteristics. , 2010, , .		6
139	Structural and electronic properties of dual plasma codeposited mixed-phase amorphous/nanocrystalline thin films. Journal of Applied Physics, 2010, 107, .	1.1	28
140	Separation Control Using DBD Plasma Actuators: Thrust Enhancement Studies. , 2010, , .		0
141	Experimental Studies of Plasma Actuator Performance for Separation Control. , 2010, , .		6
142	Separation Control Using Plasma Actuators: 2-D and Edge Effects in Steady Flow in Low Pressure Turbines. , 2010, , .		2
143	Selective nanoparticle heating: Another form of nonequilibrium in dusty plasmas. Physical Review E, 2009, 79, 026405.	0.8	121
144	Hybrid Solar Cells From Silicon Nanocrystals and Conductive Polymers. , 2009, , .		1

#	Article	IF	CITATIONS
145	Surface chemistry dependence of native oxidation formation on silicon nanocrystals. Journal of Applied Physics, 2009, 106, 064313.	1.1	25
146	Nonthermal plasma synthesized freestanding silicon–germanium alloy nanocrystals. Nanotechnology, 2009, 20, 295602.	1.3	62
147	SF ₆ plasma etching of silicon nanocrystals. Nanotechnology, 2009, 20, 035603.	1.3	28
148	Solution-Processed Germanium Nanocrystal Thin Films as Materials for Low-Cost Optical and Electronic Devices. Langmuir, 2009, 25, 11883-11889.	1.6	36
149	Universal Size-Dependent Trend in Auger Recombination in Direct-Gap and Indirect-Gap Semiconductor Nanocrystals. Physical Review Letters, 2009, 102, 177404.	2.9	314
150	Hybrid Solar Cells from P3HT and Silicon Nanocrystals. Nano Letters, 2009, 9, 449-452.	4.5	379
151	Photoluminescence quantum yields of amorphous and crystalline silicon nanoparticles. Physical Review B, 2009, 80, .	1.1	111
152	Separation Control Using DBD Plasma Actuators: Designs for Thrust Enhancement., 2009,,.		4
153	Separation Control Using Plasma Actuator: Simulation of Plasma Actuator. , 2009, , .		3
154	Nanoscale design to enable the revolution in renewable energy. Energy and Environmental Science, 2009, 2, 559.	15.6	348
155	Nonthermal plasma synthesis of semiconductor nanocrystals. Journal Physics D: Applied Physics, 2009, 42, 113001.	1.3	234
156	Bubbly Silicon: A New Mechanism for Solid Phase Crystallization of Amorphous Silicon. , 2009, , .		0
157	Analytical model of particle charging in plasmas over a wide range of collisionality. Physical Review E, 2008, 78, 046402.	0.8	80
158	Size-Dependent Intrinsic Radiative Decay Rates of Silicon Nanocrystals at Large Confinement Energies. Physical Review Letters, 2008, 100, 067401.	2.9	147
159	Nanoparticles: A Route to Post-Shrink Information Systems. , 2008, , .		0
160	Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach. Nanotechnology, 2008, 19, 245603.	1.3	126
161	Seeding Solid Phase Crystallization of Amorphous Silicon Films with Embedded Nanocrystals. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	4
162	Doping efficiency, dopant location, and oxidation of Si nanocrystals. Applied Physics Letters, 2008, 92,	1.5	186

#	Article	IF	Citations
163	Light emitting transistors using silicon quantum dots in an organic matrix. , 2008, , .		O
164	Plasma synthesis of group IV quantum dots for luminescence and photovoltaic applications. Pure and Applied Chemistry, 2008, 80, 1901-1908.	0.9	24
165	A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices. Journal Physics D: Applied Physics, 2007, 40, 2247-2257.	1.3	51
166	Gas Phase Nanoparticle Integration. Materials Research Society Symposia Proceedings, 2007, 1002, 1.	0.1	0
167	Photoluminescence Quantum Yields from Crystalline and Amorphous Silicon Nanoparticles. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	0
168	Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals. Applied Physics Letters, 2007, 91, 093119.	1.5	113
169	Doped Silicon Nanoparticles Synthesized by Nonthermal Plasma. Materials Research Society Symposia Proceedings, 2007, 1031, 1.	0.1	0
170	Electroluminescence from surface oxidized silicon nanoparticles dispersed within a polymer matrix. Applied Physics Letters, 2007, 90, 061116.	1.5	40
171	In-flight dry etching of plasma-synthesized silicon nanocrystals. Applied Physics Letters, 2007, 91, .	1.5	32
172	Plasmaâ€Assisted Synthesis of Silicon Nanocrystal Inks. Advanced Materials, 2007, 19, 2513-2519.	11.1	242
173	Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD. Carbon, 2007, 45, 364-374.	5.4	71
174	Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices. Nano Letters, 2007, 7, 1793-1798.	4.5	935
175	Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Physical Review B, 2007, 75, .	1.1	112
176	Silicon nanocrystals with ensemble quantum yields exceeding 60%. Applied Physics Letters, 2006, 88, 233116.	1.5	391
177	Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals. Journal of Luminescence, 2006, 121, 327-334.	1.5	98
178	Two-dimensional numerical study of atmospheric pressure glows in helium with impurities. Journal Physics D: Applied Physics, 2006, 39, 153-163.	1.3	100
179	TEM Study of the Morphology of Nanoparticles. Microscopy and Microanalysis, 2006, 12, 612-613.	0.2	2
180	High efficiency photoluminescence from silicon nanocrystals prepared by plasma synthesis and organic surface passivation. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3975-3978.	0.8	42

#	Article	IF	CITATIONS
181	Plasticity responses in ultra-small confined cubes and films. Acta Materialia, 2006, 54, 4515-4523.	3.8	19
182	Heat transferâ€"A review of 2003 literature. International Journal of Heat and Mass Transfer, 2006, 49, 451-534.	2.5	82
183	Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications. Journal of Nanoparticle Research, 2006, 9, 39-52.	0.8	28
184	Single nanoparticle semiconductor devices. IEEE Transactions on Electron Devices, 2006, 53, 2525-2531.	1.6	44
185	Plasma Synthesis of Highly Monodisperse Ge Nanocrystals and Self-Assembly of Dense Nanocrystal Layers. Materials Research Society Symposia Proceedings, 2006, 974, 1.	0.1	1
186	Plasma Synthesis and Surface Passivation of Silicon Quantum Dots with Photoluminescence Quantum Yields higher than 60%. Materials Research Society Symposia Proceedings, 2006, 934, 1.	0.1	0
187	Deposition of vertically oriented carbon nanofibers in atmospheric pressure radio frequency discharge. Journal of Applied Physics, 2006, 99, 024310.	1.1	18
188	Nonlocal kinetics of the electrons in a low-pressure afterglow plasma. Physical Review E, 2006, 73, 056402.	0.8	17
189	A single nanoparticle silicon transistor. , 2005, , .		2
190	High-Yield Plasma Synthesis of Luminescent Silicon Quantum Dots., 2005,, 73.		1
191	Single nanoparticle semiconductor devices. , 2005, , .		2
192	Heat transferâ€"a review of 2002 literature. International Journal of Heat and Mass Transfer, 2005, 48, 819-927.	2.5	52
193	Fast High-Density Low-Pressure Plasma Synthesis of GaN Nanocrystals. Materials Research Society Symposia Proceedings, 2005, 892, 196.	0.1	3
194	Numerical simulation of nanoparticle transport during plasma-enhanced chemical vapor deposition. IEEE Transactions on Plasma Science, 2005, 33, 398-399.	0.6	2
195	Atmospheric pressure glow discharge initiation from a single electron avalanche. IEEE Transactions on Plasma Science, 2005, 33, 318-319.	0.6	2
196	High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals. Nano Letters, 2005, 5, 655-659.	4.5	668
197	Experimental investigations into the formation of nanoparticles in aâ*nc-Si:H thin films. Journal of Applied Physics, 2005, 97, 034310.	1.1	21
198	Generation of nano-sized free standing single crystal silicon particles. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1923.	1.6	14

#	Article	IF	CITATIONS
199	Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications. Plasma Physics and Controlled Fusion, 2004, 46, B97-B109.	0.9	103
200	Understanding the structure of Si nanoclusters in a/nc-Si:H films using spherical aberration-corrected transmission electron microscopy. Materials Research Society Symposia Proceedings, 2004, 808, 437.	0.1	3
201	Two-dimensional space-time-resolved emission spectroscopy on atmospheric pressure glows in helium with impurities. Journal of Applied Physics, 2004, 96, 1835-1839.	1.1	40
202	Effects of current limitation through the dielectric in atmospheric pressure glows in helium. Journal Physics D: Applied Physics, 2004, 37, 1021-1030.	1.3	137
203	Electrical characterization of amorphous silicon nanoparticles. Journal of Applied Physics, 2004, 96, 2204-2209.	1.1	23
204	Observation of Si nanocrystals in a/nc-Si:H films by spherical-aberration corrected transmission electron microscopy. Journal of Non-Crystalline Solids, 2004, 343, 78-84.	1.5	14
205	Observation of Si Nanocrystals by Spherical-Aberration Corrected Transmission Electron Microscopy. Microscopy and Microanalysis, 2004, 10, 996-997.	0.2	0
206	Title is missing!. Shinku/Journal of the Vacuum Society of Japan, 2004, 47, 847-853.	0.2	0
207	Heat transfer––a review of 2001 literature. International Journal of Heat and Mass Transfer, 2003, 46, 1887-1992.	2.5	55
208	Modeling gas-phase nucleation in inductively coupled silane-oxygen plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 251-264.	0.9	12
209	Numerical study of the effect of gas temperature on the time for onset of particle nucleation in argon–silane low-pressure plasmas. Journal Physics D: Applied Physics, 2003, 36, 1399-1408.	1.3	61
210	Synthesis of highly oriented, single-crystal silicon nanoparticles in a low-pressure, inductively coupled plasma. Journal of Applied Physics, 2003, 94, 1969-1974.	1.1	74
211	Formation of highly uniform silicon nanoparticles in high density silane plasmas. Journal of Applied Physics, 2003, 94, 2277-2283.	1.1	46
212	Experimental study of diffusive cooling of electrons in a pulsed inductively coupled plasma. Physical Review E, 2002, 65, 056405.	0.8	65
213	Analysis of Thomson scattered light from an arc plasma jet. Physical Review E, 2002, 65, 046411.	0.8	30
214	Modeling and Diagnostics of Low Pressure Inductively Coupled Plasmas. , 2002, , 329-347.		0
215	Synthesis of Crystalline Silicon Nanoparticles in Low-Pressure Inductive Plasmas. Materials Research Society Symposia Proceedings, 2002, 737, 307.	0.1	0
216	Radial structure of a low-frequency atmospheric-pressure glow discharge in helium. Applied Physics Letters, 2002, 80, 1722-1724.	1.5	150

#	Article	IF	Citations
217	Experimental study of the influence of nanoparticle generation on the electrical characteristics of argon–silane capacitive radio-frequency plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 153-159.	0.9	17
218	Recent progress in the understanding of electron kinetics in low-pressure inductive plasmas. Applied Surface Science, 2002, 192, 244-257.	3.1	17
219	Heat transfer – a review of 2000 literature. International Journal of Heat and Mass Transfer, 2002, 45, 2853-2957.	2.5	32
220	Plasma chemistry and growth of nanosized particles in a C2H2RF discharge. Journal Physics D: Applied Physics, 2001, 34, 2160-2173.	1.3	112
221	Heat transfer: a review of 1998 literature. International Journal of Heat and Mass Transfer, 2001, 44, 253-366.	2.5	15
222	Heat transfer â€" a review of 1997 literature. International Journal of Heat and Mass Transfer, 2000, 43, 2431-2528.	2.5	18
223	Experimental observation of a "convective cell―in electron phase space in an inductively coupled radio-frequency plasma. Applied Physics Letters, 2000, 77, 1265-1267.	1.5	3
224	Modelling of silicon hydride clustering in a low-pressure silane plasma. Journal Physics D: Applied Physics, 2000, 33, 2731-2746.	1.3	115
225	Self-consistent Monte Carlo simulations of the positive column of gas discharges. Journal Physics D: Applied Physics, 1999, 32, 3188-3198.	1.3	35
226	Energy-resolved electron particle and energy fluxes in positive column plasmas. Journal Physics D: Applied Physics, 1999, 32, 2737-2745.	1.3	12
227	Heat transfer—a review of 1995 literature. International Journal of Heat and Mass Transfer, 1999, 42, 2717-2797.	2.5	8
228	Modeling of particulate coagulation in low pressure plasmas. Physical Review E, 1999, 60, 887-898.	0.8	185
229	Two-dimensional mapping of electron distribution functions in low pressure ICP. IEEE Transactions on Plasma Science, 1999, 27, 56-57.	0.6	4
230	Kinetic two-dimensional modeling of inductively coupled plasmas based on a hybrid kinetic approach. IEEE Transactions on Plasma Science, 1999, 27, 1297-1309.	0.6	22
231	Thomson scattering measurements in atmospheric plasma jets. Physical Review E, 1999, 59, 2286-2291.	0.8	31
232	Generation and growth of nanoparticles in low-pressure plasmas. Pure and Applied Chemistry, 1999, 71, 1871-1877.	0.9	28
233	Investigations of the 147 nm radiative efficiency of Xe surface wave discharges. Journal of Applied Physics, 1997, 81, 1087-1092.	1.1	16
234	On the use of dust plasma acoustic waves for the diagnostic of nanometer-sized contaminant particles in plasmas. Applied Physics Letters, 1997, 71, 208-210.	1.5	16

#	Article	IF	Citations
235	On the E - H mode transition in RF inductive discharges. Journal Physics D: Applied Physics, 1996, 29, 1224-1236.	1.3	200
236	On simplifying approaches to the solution of the Boltzmann equation in spatially inhomogeneous plasmas. Plasma Sources Science and Technology, 1996, 5, 1-17.	1.3	187
237	Comparison of Monte Carlo simulations and nonlocal calculations of the electron distribution function in a positive column plasma. Physical Review E, 1996, 54, 6746-6761.	0.8	62
238	On the radial distribution and nonambipolarity of charged particle fluxes in a nonmagnetized planar inductively coupled plasma. Journal of Applied Physics, 1996, 80, 6639-6645.	1.1	29
239	The electrical charging of micron-sized dust particles in a capacitively coupled RF plasma. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 217, 126-132.	0.9	13
240	A radiometric investigation of lowâ€pressure rf sulfur discharges. Journal of Applied Physics, 1996, 79, 7523-7528.	1.1	10
241	Pulsed discharges produced by high-power surface waves. Journal Physics D: Applied Physics, 1996, 29, 369-377.	1.3	23
242	Numerical solution of the spatially inhomogeneous Boltzmann equation and verification of the nonlocal approach for an argon plasma. Physical Review E, 1995, 51, 280-288.	0.8	68
243	On the efficiency of the electron sheath heating in capacitively coupled radio frequency discharges in the weakly collisional regime. Applied Physics Letters, 1995, 67, 191-193.	1.5	39
244	lon energy distribution functions in a planar inductively coupled RF discharge. Plasma Sources Science and Technology, 1995, 4, 541-550.	1.3	69
245	Experimental investigation and fast two-dimensional self-consistent kinetic modeling of a low-pressure inductively coupled rf discharge. Physical Review E, 1995, 51, 6063-6078.	0.8	95
246	Electron and ion distribution functions in RF and microwave plasmas. Plasma Sources Science and Technology, 1995, 4, 172-182.	1.3	49
247	Modeling of microwave discharges in the presence of plasma resonances. Physical Review E, 1995, 51, 6091-6103.	0.8	77
248	Electron energy distribution function in a microwave discharge created by propagating surface waves. Journal Physics D: Applied Physics, 1994, 27, 301-311.	1.3	44
249	On the influence of metastable atoms on surface-wave produced helium plasmas. Journal Physics D: Applied Physics, 1994, 27, 1470-1479.	1.3	21
250	Fast twoâ€dimensional selfâ€consistent kinetic modeling of lowâ€pressure inductively coupled RF discharges. Applied Physics Letters, 1994, 65, 1355-1357.	1.5	49
251	Spatial variation of the electron distribution function in a rf inductively coupled plasma: Experimental and theoretical study. Journal of Applied Physics, 1994, 76, 2048-2058.	1.1	102
252	On the influence of excited atoms on the electron kinetics of a surface wave sustained argon plasma. Plasma Sources Science and Technology, 1994, 3, 80-87.	1.3	27

#	ARTICLE	IF	CITATIONS
253	Experimental evidence on the nonlocality of the electron distribution function. Physical Review E, 1994, 49, 4369-4380.	0.8	68
254	A non-local kinetic model applied to microwave produced plasmas in cylindrical geometry. Journal Physics D: Applied Physics, 1993, 26, 1691-1699.	1.3	47
255	On the influence of energy transfer efficiency on the electron energy distribution function in HF sustained rare gas plasmas: experimental and numerical study. Journal Physics D: Applied Physics, 1993, 26, 1230-1238.	1.3	30
256	Analytical study of the influence of electron-electron collisions on the high energy part of the electron energy distribution function. Physica Scripta, 1992, 46, 450-456.	1.2	12
257	Dispersion characteristics and radial field distribution of surface waves in the collisional regime. Journal Physics D: Applied Physics, 1992, 25, 1574-1582.	1.3	54
258	On the influence of Coulomb collisions on the electron energy distribution function of surface wave produced argon plasmas. Journal Physics D: Applied Physics, 1992, 25, 644-651.	1.3	50
259	Determination of electron energy distribution functions in surface wave produced plasmas. II. Measurements. Journal Physics D: Applied Physics, 1991, 24, 1585-1593.	1.3	38
260	Determination of electron energy distribution functions in surface wave produced plasmas. I. Modelling. Journal Physics D: Applied Physics, 1991, 24, 1571-1584.	1.3	43
261	Experimental and numerical study of electromagnetic effects on resonance cones. Physics of Fluids B, 1989, 1, 538-544.	1.7	6