
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4518199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Teaching lasers to control molecules. Physical Review Letters, 1992, 68, 1500-1503.	7.8	1,409
2	Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses. Science, 2001, 292, 709-713.	12.6	836
3	Control of quantum phenomena: past, present and future. New Journal of Physics, 2010, 12, 075008.	2.9	761
4	Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. Physical Review A, 1988, 37, 4950-4964.	2.5	754
5	General foundations of highâ€dimensional model representations. Journal of Mathematical Chemistry, 1999, 25, 197-233.	1.5	722
6	A general method for constructing multidimensional molecular potential energy surfaces fromabinitiocalculations. Journal of Chemical Physics, 1996, 104, 2584-2597.	3.0	437
7	Optimal control of selective vibrational excitation in harmonic linear chain molecules. Journal of Chemical Physics, 1988, 88, 6870-6883.	3.0	404
8	High Dimensional Model Representations. Journal of Physical Chemistry A, 2001, 105, 7765-7777.	2.5	403
9	Rapidly convergent iteration methods for quantum optimal control of population. Journal of Chemical Physics, 1998, 108, 1953-1963.	3.0	396
10	Quantum Optimally Controlled Transition Landscapes. Science, 2004, 303, 1998-2001.	12.6	347
11	Quantum number and energy scaling for nonreactive collisions. Journal of Chemical Physics, 1979, 71, 850-865.	3.0	343
12	Quantum mechanical optimal control of physical observables in microsystems. Journal of Chemical Physics, 1990, 92, 364-376.	3.0	289
13	A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. Journal of Chemical Physics, 1998, 109, 385-391.	3.0	271
14	CONSTRUCTINGMULTIDIMENSIONALMOLECULARPOTENTIALENERGYSURFACES FROMABINITIODATA. Annual Review of Physical Chemistry, 1999, 50, 537-570.	10.8	217
15	Efficient Implementation of High Dimensional Model Representations. Journal of Mathematical Chemistry, 2001, 29, 127-142.	1.5	212
16	Global Sensitivity Analysis for Systems with Independent and/or Correlated Inputs. Journal of Physical Chemistry A, 2010, 114, 6022-6032.	2.5	183
17	Effective Potentials in Molecular Collisions. Journal of Chemical Physics, 1972, 57, 1718-1725.	3.0	173
18	The Green's function method of sensitivity analysis in chemical kinetics. Journal of Chemical Physics, 1978, 69, 5180-5191.	3.0	168

#	Article	IF	CITATIONS
19	Monotonically convergent algorithm for quantum optimal control with dissipation. Journal of Chemical Physics, 1999, 110, 9825-9832.	3.0	152
20	Quantum wavefunction controllability. Chemical Physics, 2001, 267, 1-9.	1.9	149
21	Effective potential formulation of moleculeâ€molecule collisions with application to H2–H2. Journal of Chemical Physics, 1974, 60, 2057-2078.	3.0	148
22	Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability. Nature Communications, 2018, 9, 5005.	12.8	144
23	Quantum control landscapes. International Reviews in Physical Chemistry, 2007, 26, 671-735.	2.3	141
24	Optimal control of curve rossing systems. Journal of Chemical Physics, 1992, 96, 2834-2845.	3.0	131
25	A global A-state potential surface for H2O: Influence of excited states on the O(1D)+H2 reaction. Journal of Chemical Physics, 1997, 107, 2340-2350.	3.0	130
26	High Dimensional Model Representations Generated from Low Dimensional Data Samples. I. mp-Cut-HDMR. Journal of Mathematical Chemistry, 2001, 30, 1-30.	1.5	127
27	Generalized monotonically convergent algorithms for solving quantum optimal control problems. Journal of Chemical Physics, 2004, 120, 5509-5517.	3.0	124
28	Optimal Control of Molecular Motion:  Design, Implementation, and Inversion. Accounts of Chemical Research, 2000, 33, 572-578.	15.6	122
29	Why do effective quantum controls appear easy to find?. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 226-240.	3.9	116
30	General formulation of HDMR component functions with independent and correlated variables. Journal of Mathematical Chemistry, 2012, 50, 99-130.	1.5	108
31	Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems. Journal of Chemical Physics, 1999, 111, 2423-2435.	3.0	106
32	Optimal Inputs for Phase Models of Spiking Neurons. Journal of Computational and Nonlinear Dynamics, 2006, 1, 358-367.	1.2	106
33	Incorporating physical implementation concerns into closed loop quantum control experiments. Journal of Chemical Physics, 2000, 113, 10841-10848.	3.0	104
34	Computational kinetics and sensitivity analysis of hydrogen–oxygen combustion. Journal of Chemical Physics, 1980, 72, 6571-6586.	3.0	102
35	An Efficient Chemical Kinetics Solver Using High Dimensional Model Representation. Journal of Physical Chemistry A, 1999, 103, 7192-7198.	2.5	100
36	Further developments and applications of the Green's function method of sensitivity analysis in chemical kinetics. Journal of Chemical Physics, 1979, 71, 1794-1808.	3.0	99

#	Article	IF	CITATIONS
37	Quantum Control of Tightly Competitive Product Channels. Physical Review Letters, 2009, 102, 253001.	7.8	99
38	Quantum control by von Neumann measurements. Physical Review A, 2006, 74, .	2.5	98
39	Coherent Control of Decoherence. Science, 2008, 320, 638-643.	12.6	97
40	Sampling-based learning control of inhomogeneous quantum ensembles. Physical Review A, 2014, 89, .	2.5	92
41	Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering. Acta Biomaterialia, 2016, 34, 133-142.	8.3	88
42	Optimally controlled quantum molecular dynamics: A perturbation formulation and the existence of multiple solutions. Physical Review A, 1993, 47, 809-816.	2.5	87
43	CHEMISTRY: Shaped Laser Pulses as Reagents. Science, 2003, 299, 525-527.	12.6	87
44	Teaching the environment to control quantum systems. Physical Review A, 2006, 73, .	2.5	82
45	Vibrationâ€rotation inelasticity in He–H2. Journal of Chemical Physics, 1974, 61, 5076-5084.	3.0	80
46	Teaching lasers to control molecules in the presence of laboratory field uncertainty and measurement imprecision. Journal of Chemical Physics, 1993, 98, 4557-4566.	3.0	80
47	Rotationally inelastic scattering with effective potentials. Journal of Chemical Physics, 1973, 59, 943-951.	3.0	77
48	Optimal control of selective vibrational excitation of harmonic molecules: Analytic solution and restricted forms for the optimal fields. Journal of Chemical Physics, 1990, 92, 2927-2937.	3.0	77
49	Landscape for optimal control of quantum-mechanical unitary transformations. Physical Review A, 2005, 72, .	2.5	76
50	Observable-preserving control of quantum dynamics over a family of related systems. Physical Review A, 2005, 72, .	2.5	75
51	Optimally controlled fiveâ€laser infrared multiphoton dissociation of HF. Journal of Chemical Physics, 1994, 100, 4211-4228.	3.0	74
52	Wavefunction controllability for finite-dimensional bilinear quantum systems. Journal of Physics A, 2003, 36, 2565-2576.	1.6	73
53	A fast algorithm for evaluating multidimensional potential energy surfaces. Journal of Chemical Physics, 1997, 106, 7223-7227.	3.0	72
54	Peak Annotation and Verification Engine for Untargeted LC–MS Metabolomics. Analytical Chemistry, 2019, 91, 1838-1846.	6.5	72

#	Article	IF	CITATIONS
55	Optimal Dynamic Discrimination of Similar Molecules through Quantum Learning Controlâ€. Journal of Physical Chemistry B, 2002, 106, 8125-8131.	2.6	67
56	Relation between quantum computing and quantum controllability. Physical Review A, 1996, 54, 1715-1716.	2.5	66
57	Reproducing kernel Hilbert space interpolation methods as a paradigm of high dimensional model representations: Application to multidimensional potential energy surface construction. Journal of Chemical Physics, 2003, 119, 6433-6442.	3.0	65
58	Exploring constrained quantum control landscapes. Journal of Chemical Physics, 2012, 137, 134113.	3.0	65
59	Vibration–rotation relaxation in He–H2. Journal of Chemical Physics, 1975, 62, 1425-1434.	3.0	64
60	Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding. Physical Review A, 2003, 67, .	2.5	64
61	Learning-Based Quantum Robust Control: Algorithm, Applications, and Experiments. IEEE Transactions on Cybernetics, 2020, 50, 3581-3593.	9.5	63
62	Theoretical evaluation of vibrational transition rates and relaxation in CO–He. Journal of Chemical Physics, 1976, 64, 2939-2952.	3.0	61
63	Exploring the level sets of quantum control landscapes. Physical Review A, 2006, 73, .	2.5	61
64	Quantum optimal control of multiple targets: Development of a monotonically convergent algorithm and application to intramolecular vibrational energy redistribution control. Journal of Chemical Physics, 2001, 114, 8867-8876.	3.0	60
65	Regularized random-sampling high dimensional model representation (RS-HDMR). Journal of Mathematical Chemistry, 2008, 43, 1207-1232.	1.5	59
66	Control landscapes for observable preparation with open quantum systems. Journal of Mathematical Physics, 2008, 49, .	1.1	59
67	Why is chemical synthesis and property optimization easier than expected?. Physical Chemistry Chemical Physics, 2011, 13, 10048.	2.8	59
68	How Shaped Light Discriminates Nearly Identical Biochromophores. Physical Review Letters, 2010, 105, 073003.	7.8	57
69	Quantum control design via adaptive tracking. Journal of Chemical Physics, 2003, 119, 3619-3625.	3.0	56
70	Sampling-Based Learning Control for Quantum Systems With Uncertainties. IEEE Transactions on Control Systems Technology, 2015, 23, 2155-2166.	5.2	55
71	Action-angle variables in quantum mechanics. Journal of Chemical Physics, 1979, 71, 4956.	3.0	54
72	Robust optimal control of quantum molecular systems in the presence of disturbances and uncertainties. Physical Review A, 1994, 49, 2241-2254.	2.5	54

#	Article	IF	CITATIONS
73	Proper construction of ab initio global potential surfaces with accurate long-range interactions. Journal of Chemical Physics, 2000, 113, 3960-3968.	3.0	54
74	Quantum observable homotopy tracking control. Journal of Chemical Physics, 2005, 123, 134104.	3.0	54
75	Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Physical Review A, 2012, 86, .	2.5	54
76	From Pulses to Circuits and Back Again: A Quantum Optimal Control Perspective on Variational Quantum Algorithms. PRX Quantum, 2021, 2, .	9.2	54
77	The Green's function method of sensitivity analysis in quantum dynamics. Journal of Chemical Physics, 1979, 70, 4609-4621.	3.0	52
78	The classical path approximation in timeâ€dependent quantum collision theory. Journal of Chemical Physics, 1978, 69, 4195-4200.	3.0	51
79	Optimal control of unimolecular reactions in the collisional regime. Journal of Chemical Physics, 1991, 94, 1158-1166.	3.0	51
80	D-MORPH regression: application to modeling with unknown parameters more than observation data. Journal of Mathematical Chemistry, 2010, 48, 1010-1035.	1.5	51
81	Closed loop learning control to suppress the effects of quantum decoherence. Journal of Chemical Physics, 2003, 118, 6751-6757.	3.0	50
82	Landscape of unitary transformations in controlled quantum dynamics. Physical Review A, 2009, 79, .	2.5	49
83	Optimal control landscapes for quantum observables. Journal of Chemical Physics, 2006, 124, 204107.	3.0	48
84	Search complexity and resource scaling for the quantum optimal control of unitary transformations. Physical Review A, 2011, 83, .	2.5	48
85	On the use of various scaling theories in the deconvolution of rotational relaxation data: Application to pressureâ€broadened linewidth measurements. Journal of Chemical Physics, 1978, 69, 902-911.	3.0	47
86	Gradient algorithm applied to laboratory quantum control. Physical Review A, 2009, 79, .	2.5	47
87	Singularities of quantum control landscapes. Physical Review A, 2012, 86, .	2.5	47
88	The collision of two linear rotors: A scaling theoretical analysis of the H2–H2 and HF–HF systems. Journal of Chemical Physics, 1980, 72, 4685-4692.	3.0	46
89	Exploring quantum control landscapes: Topology, features, and optimization scaling. Physical Review A, 2011, 84, .	2.5	46
90	Data-driven gradient algorithm for high-precision quantum control. Physical Review A, 2018, 97, .	2.5	45

#	Article	IF	CITATIONS
91	Quantum optimal control of wave packet dynamics under the influence of dissipation. Chemical Physics, 2003, 287, 197-216.	1.9	44
92	Stochastic theory of molecular collisions. Journal of Chemical Physics, 1976, 64, 1223-1239.	3.0	42
93	Chemical kinetic functional sensitivity analysis: Derived sensitivities and general applications. Journal of Chemical Physics, 1981, 75, 1810-1819.	3.0	42
94	Chemical kinetic functional sensitivity analysis: Elementary sensitivities. Journal of Chemical Physics, 1981, 74, 3362-3375.	3.0	41
95	Environment-invariant measure of distance between evolutions of an open quantum system. New Journal of Physics, 2010, 12, 015001.	2.9	41
96	Direct inversion of high overtone collision broadened linewidths in the HCl–HCl system: Rotationally inelastic rates for highly vibrationally excited molecules. Journal of Chemical Physics, 1981, 74, 5031-5036.	3.0	40
97	Optimal control landscape for the generation of unitary transformations. Physical Review A, 2008, 77, ·	2.5	40
98	Single-Molecule Phenyl-Acetylene-Macrocycle-Based Optoelectronic Switch Functioning as a Quantum-Interference-Effect Transistor. Physical Review Letters, 2012, 109, 186801.	7.8	38
99	Sampled-Data Design for Robust Control of a Single Qubit. IEEE Transactions on Automatic Control, 2013, 58, 2654-2659.	5.7	38
100	Control of quantum dynamics by optimized measurements. Physical Review A, 2008, 78, .	2.5	35
101	Accelerated optimization and automated discovery with covariance matrix adaptation for experimental quantum control. Physical Review A, 2009, 80, .	2.5	35
102	Efficient method to generate time evolution of the Wigner function for open quantum systems. Physical Review A, 2015, 92, .	2.5	35
103	The effect of control field and measurement imprecision on laboratory feedback control of quantum systems. Journal of Chemical Physics, 1994, 101, 3715-3722.	3.0	34
104	Noniterative algorithms for finding quantum optimal controls. Journal of Chemical Physics, 1999, 110, 7142-7152.	3.0	34
105	Managing singular behavior in the tracking control of quantum dynamical observables. Journal of Chemical Physics, 1999, 110, 1905-1915.	3.0	34
106	Accelerated monotonic convergence of optimal control over quantum dynamics. Physical Review E, 2010, 82, 026703.	2.1	34
107	Relationship between sensitivity indices defined by variance- and covariance-based methods. Reliability Engineering and System Safety, 2017, 167, 136-157.	8.9	34
108	A self-guided algorithm for learning control of quantum-mechanical systems. Journal of Chemical Physics, 1999, 110, 34-41.	3.0	33

#	Article	IF	CITATIONS
109	Frequency domain quantum optimal control under multiple constraints. Physical Review A, 2016, 93, .	2.5	33
110	Robust quantum control in games: An adversarial learning approach. Physical Review A, 2020, 101, .	2.5	33
111	Calculation of scattering wave functions by a numerical procedure based on the Mo/ller wave operator. Journal of Chemical Physics, 1989, 91, 2333-2342.	3.0	32
112	A propagation toolkit to design quantum controls. Journal of Chemical Physics, 2003, 118, 8168-8172.	3.0	32
113	D-MORPH regression for modeling with fewer unknown parameters than observation data. Journal of Mathematical Chemistry, 2012, 50, 1747-1764.	1.5	32
114	Sensitivity analysis in chemical kinetics: Recent developments and computational comparisons. International Journal of Chemical Kinetics, 1984, 16, 559-578.	1.6	31
115	Optimal control of selectivity of unimolecular reactions via an excited electronic state with designed lasers. Journal of Chemical Physics, 1992, 97, 276-287.	3.0	31
116	Universal characteristics of chemical synthesis and property optimization. Chemical Science, 2011, 2, 417.	7.4	31
117	A computational algorithm for the Green's function method of sensitivity analysis in chemical kinetics. International Journal of Chemical Kinetics, 1979, 11, 1237-1248.	1.6	30
118	An operator approach to functional sensitivity analysis in reactive molecular scattering. Journal of Chemical Physics, 1987, 86, 6190-6202.	3.0	30
119	Electronic and structural properties of the pentanary alloy GaxIn1â^'xPySbzAs1â^'yâ^'z. Journal of Applied Physics, 1999, 85, 7705-7715.	2.5	30
120	CHEMISTRY: Strong-Arming Molecular Dynamics. Science, 2006, 314, 264-265.	12.6	30
121	Maximum attainable field-free molecular orientation of a thermal ensemble with near–single-cycle THz pulses. Physical Review A, 2013, 87, .	2.5	30
122	Molecular Series-Tunneling Junctions. Journal of the American Chemical Society, 2015, 137, 5948-5954.	13.7	30
123	On the role of transport in the combustion kinetics of a steady-state premixed laminar CO + H2 + O2 flame. International Journal of Chemical Kinetics, 1994, 26, 437-453.	1.6	29
124	Comment on "Are There Traps in Quantum Control Landscapes?― Physical Review Letters, 2012, 108, 198901; author reply 198902.	7.8	29
125	Searching for quantum optimal control fields in the presence of singular critical points. Physical Review A, 2014, 90, .	2.5	29
126	The dimensionality and choice of effective Hamiltonians for molecular collisions. Journal of Chemical Physics, 1975, 63, 5208-5215.	3.0	28

HERSCHEL A RABITZ

#	Article	IF	CITATIONS
127	Rapid and accurate evaluation of inelastic molecular cross sections. Journal of Chemical Physics, 1978, 68, 642-646.	3.0	28
128	Wavelet Transform for Analysis of Molecular Dynamics. The Journal of Physical Chemistry, 1996, 100, 19165-19173.	2.9	28
129	Experimental quantum control landscapes: Inherent monotonicity and artificial structure. Physical Review A, 2009, 80, .	2.5	28
130	Characterization of control noise effects in optimal quantum unitary dynamics. Physical Review A, 2014, 90, .	2.5	28
131	Further developments and applications of sensitivity analysis to collisional energy transfer. Journal of Chemical Physics, 1980, 73, 4998-5012.	3.0	27
132	Control landscapes are almost always trap free: a geometric assessment. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 205302.	2.1	27
133	Potential surfaces from the inversion of time dependent probability density data. Journal of Chemical Physics, 1999, 111, 472-480.	3.0	26
134	Manipulating bond lengths adiabatically with light. Journal of Chemical Physics, 2003, 119, 10653-10657.	3.0	26
135	Quantum optimal control of isomerization dynamics of a one-dimensional reaction-path model dominated by a competing dissociation channel. Journal of Chemical Physics, 2009, 131, 044306.	3.0	26
136	Relative contributions of ΔJ = 2 and ΔJ = 1 transitions in rotationally inelastic collisions of polar molecules. Journal of Chemical Physics, 1973, 59, 3816-3824.	3.0	25
137	Optimal control of population transfer in an optically dense medium. Journal of Chemical Physics, 1996, 104, 1173-1178.	3.0	25
138	Single-Molecule Electric Revolving Door. Nano Letters, 2013, 13, 5020-5025.	9.1	25
139	Effective Hamiltonian methods for the semiclassical treatment of molecular collisions. Journal of Chemical Physics, 1976, 64, 4821-4831.	3.0	24
140	Focused bulk ultrasonic waves generated by ringâ€shaped laser illumination and application to flaw detection. Journal of Applied Physics, 1996, 80, 4274-4281.	2.5	24
141	Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments. Journal of Modern Optics, 2007, 54, 2339-2349.	1.3	24
142	The roles of drift and control field constraints upon quantum control speed limits. New Journal of Physics, 2017, 19, 103015.	2.9	24
143	Vibration–rotation relaxation in bimolecular collisions with application to paraâ€hydrogen. Journal of Chemical Physics, 1977, 66, 152-159.	3.0	23
144	Stochastic theory of molecular collisions. II. Application to atom–vibrotor collisions. Journal of Chemical Physics, 1977, 66, 269-277.	3.0	23

HERSCHEL A RABITZ

#	Article	IF	CITATIONS
145	Scaling theoretic deconvolution of bulk relaxation data: Stateâ€toâ€state rates from pressureâ€broadened linewidths. Journal of Chemical Physics, 1978, 68, 1981-1987.	3.0	23
146	Rotational relaxation rates in HF and Ar–HF from the direct inversion of pressure broadened linewidths. Journal of Chemical Physics, 1981, 75, 4927-4933.	3.0	23
147	On the inversion of atomic scattering data: A new algorithm based on functional sensitivity analysis. Journal of Chemical Physics, 1989, 91, 7590-7605.	3.0	23
148	Determination of the interatomic potential from elastic differential cross sections at fixed energy: Functional sensitivity analysis approach. Journal of Chemical Physics, 1989, 90, 1519-1525.	3.0	23
149	Quantum functional sensitivity analysis for the collinear H+H2 reaction rate coefficient. Journal of Chemical Physics, 1992, 96, 3523-3530.	3.0	23
150	The role of theory in the laboratory control of quantum dynamics phenomena. Theoretical Chemistry Accounts, 2003, 109, 64-70.	1.4	23
151	Searching for quantum optimal controls under severe constraints. Physical Review A, 2015, 91, .	2.5	23
152	Sequential Collapse Model for Protein Folding Pathways. Journal of Physical Chemistry B, 1999, 103, 9749-9758.	2.6	22
153	Nonlinear Kinetic Parameter Identification through Map Inversion. Journal of Physical Chemistry A, 2002, 106, 12315-12323.	2.5	22
154	Fast-kick-off monotonically convergent algorithm for searching optimal control fields. Physical Review A, 2011, 84, .	2.5	22
155	Quantum Ensemble Classification: A Sampling-Based Learning Control Approach. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, 1345-1359.	11.3	22
156	Impact parameter methods with effective potentials for inelastic molecular collisions. Journal of Chemical Physics, 1973, 58, 3975-3987.	3.0	21
157	Robust optimal control theory for selective vibrational excitation in molecules: A worst case analysis. Journal of Chemical Physics, 1992, 97, 1353-1364.	3.0	21
158	Radiation transport simulation by means of a fully equivalent operational model. Geophysical Research Letters, 2000, 27, 3485-3488.	4.0	21
159	Mechanistic Analysis of Optimal Dynamic Discrimination of Similar Quantum Systems. Journal of Physical Chemistry A, 2004, 108, 4778-4785.	2.5	21
160	Forward and inverse functional variations in elastic scattering. Journal of Chemical Physics, 1987, 86, 1395-1406.	3.0	20
161	A Local-Time Algorithm for Achieving Quantum Control. Journal of Physical Chemistry A, 2003, 107, 7264-7268.	2.5	20
162	A general formulation of monotonically convergent algorithms in the control of quantum dynamics beyond the linear dipole interaction. Computer Physics Communications, 2011, 182, 14-17.	7.5	20

#	Article	IF	CITATIONS
163	Optimal control of molecular fragmentation with homologous families of photonic reagents and chemical substrates. Physical Chemistry Chemical Physics, 2013, 15, 18012.	2.8	20
164	Experimental exploration over a quantum control landscape through nuclear magnetic resonance. Physical Review A, 2014, 89, .	2.5	20
165	How to Make Distinct Dynamical Systems Appear Spectrally Identical. Physical Review Letters, 2017, 118, 083201.	7.8	20
166	Progress toward favorable landscapes in quantum combinatorial optimization. Physical Review A, 2021, 104, .	2.5	20
167	Algebraic timeâ€dependent variational approach to dynamical calculations. Journal of Chemical Physics, 1988, 88, 7508-7521.	3.0	19
168	Inversion of gas–surface scattering data for potential determination using functional sensitivity analysis. II. Extraction of the full interaction potential from low energy diffraction data. Journal of Chemical Physics, 1992, 96, 7092-7098.	3.0	19
169	Regularized inversion of diatomic vibration–rotation spectral data: A functional sensitivity analysis approach. Journal of Chemical Physics, 1992, 97, 852-861.	3.0	19
170	Minimal time trajectories for two-level quantum systems with two bounded controls. Journal of Mathematical Physics, 2014, 55, .	1.1	19
171	Optimal control of charge transfer for slow H+ + D collisions with shaped laser pulses. Journal of Chemical Physics, 2014, 140, 094304.	3.0	19
172	Forward and inverse functional variations in rotationally inelastic scattering. Journal of Chemical Physics, 1986, 85, 3277-3292.	3.0	18
173	Optimal control of vibronic population inversion with inclusion of molecular rotation. Journal of Chemical Physics, 1994, 100, 4811-4819.	3.0	18
174	δ â€ŧarget optimal control of molecular dynamics: Application to a rotating diatomic molecule. Journal of Chemical Physics, 1995, 103, 8412-8423.	3.0	18
175	Quantum control experiments as a testbed for evolutionary multi-objective algorithms. Genetic Programming and Evolvable Machines, 2012, 13, 445-491.	2.2	18
176	Time-resolved quantum process tomography using Hamiltonian-encoding and observable-decoding. New Journal of Physics, 2013, 15, 025032.	2.9	18
177	Gate Control of the Conduction Mechanism Transition from Tunneling to Thermally Activated Hopping. Journal of Physical Chemistry Letters, 2014, 5, 1831-1836.	4.6	18
178	Near-time-optimal control for quantum systems. Physical Review A, 2015, 92, .	2.5	18
179	Monotonic convergent quantum optimal control method with exact equality constraints on the optimized control fields. Physical Review A, 2016, 93, .	2.5	18
180	Sources of rotational cross section asymmetry σ(J→J + ΔJ)/σ(J→J ―ΔJ) in moleculeâ€atom and moleculeâ€mo systems. Journal of Chemical Physics, 1974, 61, 3707-3719.	leçule	17

#	Article	IF	CITATIONS
181	Theoretical analysis of collision characteristics. Journal of Chemical Physics, 1976, 64, 5291-5303.	3.0	17
182	Sensitivity analysis of rotational energy transfer processes to the intermolecular potential. Journal of Chemical Physics, 1980, 72, 2314-2323.	3.0	17
183	Sensitivity analysis of differential cross sections to the intermolecular potential. Journal of Chemical Physics, 1981, 74, 3859-3873.	3.0	17
184	Average wave function method for gas–surface scattering. Journal of Chemical Physics, 1986, 84, 1852-1862.	3.0	17
185	Controlling quantum phenomena: Why does it appear easy to achieve?. Journal of Modern Optics, 2004, 51, 2469-2475.	1.3	17
186	Sensitivity Analysis and Its Role in Quantum Scattering Theory. Advances in Chemical Physics, 2007, , 177-226.	0.3	17
187	Quantum multiobservable control. Physical Review A, 2008, 77, .	2.5	17
188	Light-driven electron transport through a molecular junction based on cross-conjugated systems. Journal of Chemical Physics, 2014, 141, 124703.	3.0	17
189	Efficient retrieval of landscape Hessian: Forced optimal covariance adaptive learning. Physical Review E, 2014, 89, 063306.	2.1	17
190	Multiple time scale stochastic formulation for collision problems with more than one degree of freedom. Journal of Chemical Physics, 1979, 70, 1286-1298.	3.0	16
191	Vibrational energy transfer at the gas–solid interface: The role of collective and of localized vibrational modes. Journal of Chemical Physics, 1986, 85, 2300-2314.	3.0	16
192	Parametric sensitivity analysis of avian pancreatic polypeptide (APP). Proteins: Structure, Function and Bioinformatics, 1995, 23, 218-232.	2.6	16
193	Exploring the transition-probability-control landscape of open quantum systems: Application to a two-level case. Physical Review A, 2013, 88, .	2.5	16
194	Wigner–Lindblad Equations for Quantum Friction. Journal of Physical Chemistry Letters, 2016, 7, 1632-1637.	4.6	16
195	Singularity-free quantum tracking control of molecular rotor orientation. Physical Review A, 2018, 98, .	2.5	16
196	Assessing three closed-loop learning algorithms by searching for high-quality quantum control pulses. Physical Review A, 2020, 102, .	2.5	16
197	Learning Control of Quantum Systems Using Frequency-Domain Optimization Algorithms. IEEE Transactions on Control Systems Technology, 2021, 29, 1791-1798.	5.2	16
198	Digital quantum simulation of molecular dynamics and control. Physical Review Research, 2021, 3, .	3.6	16

#	Article	IF	CITATIONS
199	Stochastic theory of intramolecular energy transfer in the presence of radiation. Journal of Chemical Physics, 1981, 74, 1175-1185.	3.0	15
200	Probing the He–H2potential surface with dynamical and kinetic observables. Journal of Chemical Physics, 1989, 91, 1051-1061.	3.0	15
201	Inversion of gas–surface scattering data for potential determination using functional sensitivity analysis. I. A case study for the He–Xe/C(0001) potential. Journal of Chemical Physics, 1991, 94, 2305-2314.	3.0	15
202	Efficient potential energy surfaces from partially filled ab initio data over arbitrarily shaped regions. Journal of Chemical Physics, 2001, 114, 3940-3944.	3.0	15
203	Substituent Ordering and Interpolation in Molecular Library Optimization. Journal of Physical Chemistry A, 2003, 107, 2066-2074.	2.5	15
204	Hamiltonian Identification Through Enhanced Observability Utilizing Quantum Control. IEEE Transactions on Automatic Control, 2012, 57, 2679-2683.	5.7	15
205	Experimental observation of saddle points over the quantum control landscape of a two-spin system. Physical Review A, 2015, 91, .	2.5	15
206	Highâ€ŧemperature vibrational–rotational relaxation in He–H2. Journal of Chemical Physics, 1978, 68, 647-651.	3.0	14
207	Observation of collisional relaxation from HD v = 5 and v = 6 by direct overtone pumping and photoacoustic detection. Journal of Chemical Physics, 1981, 75, 4893-4896.	3.0	14
208	A hybrid approach to modeling the dynamics of macromolecules. Journal of Chemical Physics, 1986, 85, 3655-3673.	3.0	14
209	Optimal control landscape for the generation of unitary transformations with constrained dynamics. Physical Review A, 2010, 81, .	2.5	14
210	Low Entropic Barrier to the Hydrophobic Collapse of the Prion Protein: Effects of Intermediate States and Conformational Flexibility. Journal of Physical Chemistry A, 2010, 114, 6978-6982.	2.5	14
211	Time-Local Equation for the Exact Optimized Effective Potential in Time-Dependent Density Functional Theory. Physical Review Letters, 2017, 118, 243001.	7.8	14
212	Controlling Qubit Networks in Polynomial Time. Physical Review Letters, 2018, 120, 220503.	7.8	14
213	Dependence of the quantum speed limit on system size and control complexity. New Journal of Physics, 2018, 20, 063002.	2.9	14
214	Stochastic theory for molecular collisions: Application to the CO–He system. Journal of Chemical Physics, 1979, 70, 2455-2462.	3.0	13
215	Role of Topology in the Cooperative Collapse of the Protein Core in the Sequential Collapse Model. Folding Pathway of α-Lactalbumin and Hen Lysozyme. Journal of Physical Chemistry B, 2001, 105, 2874-2880.	2.6	13
216	The canonical coset decomposition of unitary matrices through Householder transformations. Journal of Mathematical Physics, 2010, 51, 082101.	1.1	13

#	Article	IF	CITATIONS
217	Global optimality of fitness landscapes in evolution. Chemical Science, 2012, 3, 900-906.	7.4	13
218	Assessment of optimal control mechanism complexity by experimental landscape Hessian analysis: fragmentation of CH ₂ Brl. New Journal of Physics, 2014, 16, 125004.	2.9	13
219	Dynamic Dimensionality Identification for Quantum Control. Physical Review Letters, 2014, 112, 143001.	7.8	13
220	Pathway dynamics in the optimal quantum control of rubidium: Cooperation and competition. Physical Review A, 2014, 89, .	2.5	13
221	Theory of molecular conductance using a modular approach. Journal of Chemical Physics, 2016, 145, 234702.	3.0	13
222	Decoherence of a single spin coupled to an interacting spin bath. Physical Review B, 2016, 93, .	3.2	13
223	Common foundations of optimal control across the sciences: evidence of a free lunch. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160210.	3.4	13
224	Optimal control of orientation and entanglement for two dipole–dipole coupled quantum planar rotors. Physical Chemistry Chemical Physics, 2018, 20, 13008-13029.	2.8	13
225	High efficiency classification of children with autism spectrum disorder. PLoS ONE, 2018, 13, e0192867.	2.5	13
226	Interdiction of Protein Folding for Therapeutic Drug Development in SARS CoV-2. Journal of Physical Chemistry B, 2020, 124, 8201-8208.	2.6	13
227	Nodal structure and global behavior of scattering wave functions. Journal of Chemical Physics, 1980, 72, 5287-5289.	3.0	12
228	Parametric sensitivity of system stability in chemical dynamics. Journal of Chemical Physics, 1985, 82, 3674-3684.	3.0	12
229	Quantum effects in the surface penetration of energetic hydrogen atoms. Journal of Chemical Physics, 1994, 101, 8205-8213.	3.0	12
230	Methane Conversion to Ethylene and Acetylene:Â Optimal Control with Chlorine, Oxygen, and Heat Flux. Industrial & Engineering Chemistry Research, 1996, 35, 683-696.	3.7	12
231	A network flow model for biclustering via optimal re-ordering of data matrices. Journal of Global Optimization, 2010, 47, 343-354.	1.8	12
232	Exploring quantum control landscape structure. Physical Review A, 2013, 88, .	2.5	12
233	Optimal nonlinear coherent mode transitions in Bose-Einstein condensates utilizing spatiotemporal controls. Physical Review A, 2016, 93, .	2.5	12
234	Conductance and activation energy for electron transport in series and parallel intramolecular circuits. Physical Chemistry Chemical Physics, 2016, 18, 32087-32095.	2.8	12

#	Article	IF	CITATIONS
235	Nature's Shortcut to Protein Folding. Journal of Physical Chemistry B, 2019, 123, 4463-4476.	2.6	12
236	Studies of inelastic molecular collisions using impact parameter methods. III. Line shape functions. Journal of Chemical Physics, 1975, 63, 1547-1554.	3.0	11
237	Two-State Folding Kinetics of Small Proteins in the Sequential Collapse Model:Â Dependence of the Folding Rate on Contact Order and Temperature. Journal of Physical Chemistry B, 2003, 107, 12874-12877.	2.6	11
238	Sensitivity Analysis in Biomolecular Simulation. Reviews in Computational Chemistry, 2007, , 281-326.	1.5	11
239	Exploring control landscapes for laser-driven molecular fragmentation. Journal of Chemical Physics, 2013, 139, 144201.	3.0	11
240	Sampledâ€data design for robust control of open twoâ€level quantum systems with operator errors. IET Control Theory and Applications, 2016, 10, 2415-2421.	2.1	11
241	The optimization landscape of hybrid quantum–classical algorithms: From quantum control to NISQ applications. Annual Reviews in Control, 2022, 54, 314-323.	7.9	11
242	Application of stochastic theory to vibration–rotation inelasticity in the He–H2 system. Journal of Chemical Physics, 1977, 67, 64-73.	3.0	10
243	A hybrid model for vibrational energy transfer at the gas–solid interface: Discrete surface atoms plus a continuous elastic bulk. Journal of Chemical Physics, 1990, 92, 3957-3976.	3.0	10
244	The Gradient Flow for Control of Closed Quantum Systems. IEEE Transactions on Automatic Control, 2013, 58, 2665-2669.	5.7	10
245	High dimensional model representation constructed by support vector regression. I. Independent variables with known probability distributions. Journal of Mathematical Chemistry, 2017, 55, 278-303.	1.5	10
246	Exploring experimental fitness landscapes for chemical synthesis and property optimization. Physical Chemistry Chemical Physics, 2017, 19, 4266-4287.	2.8	10
247	Reply to comment on †control landscapes are almost always trap free: a geometric assessment'. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 508002.	2.1	10
248	Studies of inelastic molecular collisions using impact parameter methods. II. Exact and highâ€energy approximate calculations. Journal of Chemical Physics, 1975, 62, 2747-2759.	3.0	9
249	Actionâ€angle variables for quantum mechanical coplanar scattering. Journal of Chemical Physics, 1984, 80, 3586-3595.	3.0	9
250	Average wave function method for multiple scattering. Journal of Chemical Physics, 1986, 84, 1373-1378.	3.0	9
251	Semiclassical perturbation theory for atom scattering from surfaces with defects. Journal of Chemical Physics, 1987, 87, 4958-4961.	3.0	9
252	On understanding the relationship between structure in the potential surface and observables in classical dynamics: A functional sensitivity analysis approach. Journal of Chemical Physics, 1987, 86, 3886-3900.	3.0	9

#	Article	IF	CITATIONS
253	Quantum functional sensitivity analysis within the logâ€derivative Kohn variational method for reactive scattering. Journal of Chemical Physics, 1992, 97, 6226-6239.	3.0	9
254	Predicting observables on different potential energy surfaces using feature sensitivity analysis: Application to the collinear H+H2 exchange reaction. Journal of Chemical Physics, 1992, 97, 6240-6248.	3.0	9
255	Multiquantum vibrational energy transfer into adsorbates on solid surfaces by atomic collisions: A semiclassical treatment based on dynamical correlations. Journal of Chemical Physics, 1992, 97, 1562-1575.	3.0	9
256	Principal component analysis of dipeptides. Journal of Computational Chemistry, 1994, 15, 963-980.	3.3	9
257	A special singular perturbation method for kinetic model reduction: With application to an H2/O2 oxidation model. Journal of Chemical Physics, 1996, 105, 4065-4075.	3.0	9
258	Attaining optimal controls for manipulating quantum systems. International Journal of Quantum Chemistry, 2003, 93, 50-58.	2.0	9
259	Optimal control of the local electromagnetic response of nanostructured materials: Optimal detectors and quantum disguises Applied Physics Letters, 2009, 94, .	3.3	9
260	A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121–231). Chemical Physics Letters, 2013, 574, 112-115.	2.6	9
261	Topology of classical molecular optimal control landscapes in phase space. Journal of Chemical Physics, 2013, 138, 124114.	3.0	9
262	Systematic Trends in Photonic Reagent Induced Reactions in a Homologous Chemical Family. Journal of Physical Chemistry A, 2013, 117, 8205-8215.	2.5	9
263	Quantum control and pathway manipulation in rubidium. Physical Review A, 2015, 92, .	2.5	9
264	Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states. Journal of Mathematical Physics, 2016, 57, .	1.1	9
265	Combining the synergistic control capabilities of modeling and experiments: Illustration of finding a minimum-time quantum objective. Physical Review A, 2020, 101, .	2.5	9
266	Derived sensitivity densities in chemical kinetics: A new computational approach with applications. Journal of Chemical Physics, 1983, 79, 692-707.	3.0	8
267	Scaling relations for multiplicative quantum mechanical operators. Journal of Chemical Physics, 1984, 80, 1201-1203.	3.0	8
268	Steady state reactive kinetics on surfaces exhibiting defect structures. Journal of Chemical Physics, 1985, 82, 3430-3441.	3.0	8
269	Convergence properties of a class of boundary element approximations to linear diffusion problems with localized nonlinear reactions. Numerical Methods for Partial Differential Equations, 1990, 6, 75-108.	3.6	8
270	Discreteâ€continuum hybrid model for dynamics with applications: Desorption of adsorbates and relaxation of lattice inclusions. Journal of Chemical Physics, 1990, 93, 4673-4686.	3.0	8

#	Article	IF	CITATIONS
271	Multiquantum vibrational energy transfer into surface Rayleigh, bulk shear, and pressure waves by atom–solidâ€surface collisions: A discreteâ€continuum hybrid treatment with applications to He–Pt(111). Journal of Chemical Physics, 1992, 97, 1576-1594.	3.0	8
272	Beyond the Bloch equations: A wave functionâ€based approach to selective excitation in condensed media. Journal of Chemical Physics, 1993, 98, 9650-9657.	3.0	8
273	Determination of diabatic coupling potentials from the inversion of laboratory inelastic scattering data: Application to C4++He→C2++He2+. Journal of Chemical Physics, 1997, 106, 6548-6551.	3.0	8
274	Relating contact order to the rate of cooperative collapse in the sequential collapse model for protein folding pathways. Chemical Physics Letters, 2003, 376, 612-617.	2.6	8
275	On the Inversion of Quantum Mechanical Systems: Determining the Amount and Type of Data for a Unique Solution. Journal of Mathematical Chemistry, 2004, 35, 65-78.	1.5	8
276	Multicomponent control via shaped, strong laser fields mass spectrometry. Journal of Modern Optics, 2008, 55, 177-185.	1.3	8
277	Multi-polarization quantum control of rotational motion through dipole coupling. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 105303.	2.1	8
278	Dynamic homotopy and landscape dynamical set topology in quantum control. Journal of Mathematical Physics, 2012, 53, .	1.1	8
279	Analytical HDMR formulas for functions expressed as quadratic polynomials with a multivariate normal distribution. Journal of Mathematical Chemistry, 2014, 52, 2052-2073.	1.5	8
280	Experimental Design of Formulations Utilizing High Dimensional Model Representation. Journal of Physical Chemistry A, 2015, 119, 8237-8249.	2.5	8
281	Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra. Scientific Reports, 2016, 6, 25827.	3.3	8
282	Searching for an optimal control in the presence of saddles on the quantum-mechanical observable landscape. Physical Review A, 2017, 95, .	2.5	8
283	Drawing together control landscape and tomography principles. Physical Review A, 2020, 102, .	2.5	8
284	Decomposition theory of chemical reactions. Journal of Chemical Physics, 1977, 67, 2964-2973.	3.0	7
285	Sensitivity analysis of mass effects in rotational energy transfer. Journal of Chemical Physics, 1988, 88, 6322-6334.	3.0	7
286	Mass effects and channel coupling sensitivity in vibrational energy transfer. Journal of Chemical Physics, 1989, 90, 1711-1719.	3.0	7
287	An application of minimax analysis to robust optimal control of molecular dynamics. Journal of Chemical Physics, 1994, 101, 8580-8591.	3.0	7
288	On the generality of optimal control theory for laserâ€induced control field design. Journal of Chemical Physics, 1996, 105, 1299-1300.	3.0	7

#	Article	IF	CITATIONS
289	Risk analysis by the guided monte carlo technique. Journal of Statistical Computation and Simulation, 1997, 57, 321-336.	1.2	7
290	Differences between the Sequential Collapse Folding Pathways of Apoleghemoglobin and Apomyoglobin. Journal of Physical Chemistry B, 2002, 106, 4818-4822.	2.6	7
291	Theoretical valence band offsets of semiconductor heterojunctions. Applied Physics Letters, 2002, 80, 4543-4545.	3.3	7
292	Sequential Collapse Folding Pathway of β-Lactoglobulin: Parallel Pathways and Non-Native Secondary Structure. Journal of Physical Chemistry B, 2003, 107, 3606-3612.	2.6	7
293	Local topology at limited resource induced suboptimal traps on the quantum control landscape. Journal of Mathematical Chemistry, 2014, 52, 407-429.	1.5	7
294	Quantum-control-landscape structure viewed along straight paths through the space of control fields. Physical Review A, 2016, 93, .	2.5	7
295	On choosing the form of the objective functional for optimal control of molecules. Journal of Mathematical Chemistry, 2016, 54, 1-9.	1.5	7
296	Analytic Solutions to Coherent Control of the Dirac Equation. Physical Review Letters, 2017, 119, 173203.	7.8	7
297	Quantum State Filter With Disturbance and Noise. IEEE Transactions on Automatic Control, 2020, 65, 2856-2866.	5.7	7
298	Studies of inelastic molecular collisions using impact parameter methods. I. Model calculations. Journal of Chemical Physics, 1975, 62, 1409-1424.	3.0	6
299	Vibrational–rotational relaxation from high vibrational states in He–HD. Journal of Chemical Physics, 1979, 70, 2569-2573.	3.0	6
300	Examining the accuracy of the infinite order sudden approximation using sensitivity analysis. Journal of Chemical Physics, 1981, 75, 1728-1734.	3.0	6
301	Conformational study of dipeptides: A sensitivity analysis approach. Journal of Computational Chemistry, 1994, 15, 947-962.	3.3	6
302	A lumped model for H2/O2 oxidation in the oscillatory regime. Journal of Chemical Physics, 1995, 102, 7006-7016.	3.0	6
303	Inversion of absorption spectral data for relaxation matrix determination. I. Application to line mixing in the 106â†000 overtone transition of HCN. Journal of Chemical Physics, 1998, 108, 392-401.	3.0	6
304	Inversion of absorption spectral data for relaxation matrix determination. II. Application to Q-branch line mixing in HCN, C2H2, and N2O. Journal of Chemical Physics, 1998, 108, 1780-1793.	3.0	6
305	Molecular Dipole Function Inversion from Time Dependent Probability Density and Electric Field Data. Journal of Physical Chemistry A, 1999, 103, 10187-10193.	2.5	6
306	Driving wave packet recurrences with optimally modulated laser pulses. Journal of Chemical Physics, 2000, 112, 5081-5090.	3.0	6

#	Article	IF	CITATIONS
307	Closed loop learning control with reduced space quantum dynamics. Journal of Chemical Physics, 2002, 117, 1024-1030.	3.0	6
308	Assessing and managing laser system stability for quantum control experiments. Review of Scientific Instruments, 2006, 77, 083107.	1.3	6
309	Quantum state transformation by optimal projective measurements. Journal of Mathematical Chemistry, 2011, 49, 507-519.	1.5	6
310	Characterization of the Critical Sets of Quantum Unitary Control Landscapes. IEEE Transactions on Automatic Control, 2014, 59, 2083-2098.	5.7	6
311	Quantum optimal control pathways of ozone isomerization dynamics subject to competing dissociation: A two-state one-dimensional model. Journal of Chemical Physics, 2014, 140, 084305.	3.0	6
312	Coherent light-driven electron transport through polycyclic aromatic hydrocarbon: laser frequency, field intensity, and polarization angle dependence. Physical Chemistry Chemical Physics, 2015, 17, 20617-20629.	2.8	6
313	Topology of classical molecular optimal control landscapes for multi-target objectives. Journal of Chemical Physics, 2015, 142, 154115.	3.0	6
314	Sampling-based robust control in synchronizing collision with shaped laser pulses: an application in charge transfer for H ⁺ + D → H + D ⁺ . RSC Advances, 2016, 6, 92962-92969.	3.6	6
315	Macromolecular Crowding Facilitates the Conformational Transition of on-Pathway Molten Globule States of the Prion Protein. Journal of Physical Chemistry B, 2016, 120, 11093-11101.	2.6	6
316	Inherently trap-free convex landscapes for fully quantum optimal control. Journal of Mathematical Chemistry, 2019, 57, 2154-2167.	1.5	6
317	Quantum control landscape of bipartite systems. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 165305.	2.1	6
318	Decomposition of K and T matrices for inelastic scattering using variational principles. Journal of Chemical Physics, 1974, 61, 600-608.	3.0	5
319	On the effect of fluctuations on explosive reactions. Journal of Chemical Physics, 1984, 81, 4396-4400.	3.0	5
320	Inverse problems in chemical dynamics: The calculation of inverse coefficients. Journal of Chemical Physics, 1987, 86, 1387-1394.	3.0	5
321	Molecular dynamics with Langevin equation using local harmonics and Chandrasekhar's convolution. Journal of Chemical Physics, 1993, 99, 5316-5325.	3.0	5
322	Determination of multiple diabatic potentials by the inversion of atom–atom scattering data. Journal of Chemical Physics, 1995, 103, 4052-4060.	3.0	5
323	Vibrational and Rotational Collision Processes. Advances in Chemical Physics, 2007, , 271-304.	0.3	5
324	Principles for determining mechanistic pathways from observable quantum control data. Journal of Mathematical Chemistry, 2008, 44, 142-171.	1.5	5

HERSCHEL A RABITZ

#	Article	IF	CITATIONS
325	Sampled-data design for robust decoherence control of a single qubit. , 2012, , .		5
326	A scalable algorithm for molecular property estimation in high dimensional scaffold-based libraries. Journal of Mathematical Chemistry, 2012, 50, 1765-1790.	1.5	5
327	Analysis of gene network robustness based on saturated fixed point attractors. Eurasip Journal on Bioinformatics and Systems Biology, 2014, 2014, 4.	1.4	5
328	Gate Control of Artificial Single-Molecule Electric Machines. Journal of Physical Chemistry C, 2015, 119, 4573-4579.	3.1	5
329	Identifying a cooperative control mechanism between an applied field and the environment of open quantum systems. Physical Review A, 2016, 93, .	2.5	5
330	Predicting the location of the non-local contacts in α-synuclein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 1201-1208.	2.3	5
331	Shaped incoherent light for control of kinetics: Optimization of up-conversion hues in phosphors. Journal of Chemical Physics, 2018, 149, 054201.	3.0	5
332	Quantum optimal control of multiple weakly interacting molecular rotors in the time-dependent Hartree approximation. Journal of Chemical Physics, 2019, 150, 164303.	3.0	5
333	Optimal control of coupled quantum systems based on the first-order Magnus expansion: Application to multiple dipole-dipole-coupled molecular rotors. Physical Review A, 2020, 102, .	2.5	5
334	Optimization Landscape of Quantum Control Systems. Complex System Modeling and Simulation, 2021, 1, 77-90.	5.3	5
335	Ceneralized effective Hamiltonians: Time scale separation within a semiclassical formalism. Journal of Chemical Physics, 1978, 68, 4017-4021.	3.0	4
336	Hot lasers, cool molecules. Nature, 1993, 366, 304-305.	27.8	4
337	Critical Points of the Optimal Quantum Control Landscape: A Propagator Approach. Acta Applicandae Mathematicae, 2012, 118, 49-56.	1.0	4
338	Exploring the control landscape for nonlinear quantum dynamics. Physical Review A, 2014, 89, .	2.5	4
339	Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121–231). Chemical Physics Letters, 2014, 591, 207-211.	2.6	4
340	Sparse and nonnegative sparse D-MORPH regression. Journal of Mathematical Chemistry, 2015, 53, 1885-1914.	1.5	4
341	Gaining Mechanistic Insight with Control Pulse Slicing: Application to the Dissociative Ionization of CH ₂ BrI. Journal of Physical Chemistry A, 2017, 121, 8632-8641.	2.5	4
342	Exact-exchange optimized effective potential and memory effect in time-dependent density functional theory. European Physical Journal B, 2018, 91, 1.	1.5	4

#	Article	IF	CITATIONS
343	An upper bound on the time required to implement unitary operations. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 125304.	2.1	4
344	A localized integral equation formulation of molecular scattering. Journal of Chemical Physics, 1982, 76, 417-428.	3.0	3
345	Tâ€matrix scaling relations: Necessary and sufficient conditions for the existence of dynamically invariant scaling coefficients. Journal of Chemical Physics, 1984, 80, 2598-2601.	3.0	3
346	Upper and lower bounds on the control field and the quality of achieved optimally controlled quantum molecular motion. Journal of Mathematical Chemistry, 1996, 19, 337-352.	1.5	3
347	Shortâ€range approach to an A+BC collision complex with a contribution of an ionic state A++BCâ^': Application to A=H. Journal of Chemical Physics, 1996, 104, 551-562.	3.0	3
348	The effect of quantum dispersion on laboratory feedback optimal control. Journal of Modern Optics, 1997, 44, 2049-2052.	1.3	3
349	Optimization of polymer synthesis through distributed control of polymerization conditions. Journal of Applied Polymer Science, 2002, 85, 2922-2928.	2.6	3
350	Sequential Collapse Folding Pathway of Staphylococcal Nuclease:Â Entropic Activation Barriers to Hydrophobic Collapse of the Protein Core. Journal of Physical Chemistry B, 2004, 108, 8023-8030.	2.6	3
351	Perturbative and nonperturbative master equations for open quantum systems. Journal of Mathematical Physics, 2005, 46, 022105.	1.1	3
352	Survey of control performance in quantum information processing. Quantum Information Processing, 2016, 15, 4361-4390.	2.2	3
353	PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems. Quantum Information Processing, 2016, 15, 3489-3518.	2.2	3
354	Ultrafast Photofragmentation of Ln(hfac)3 with a Proposed Mechanism for forming High Mass Fluorinated Products. Scientific Reports, 2020, 10, 7066.	3.3	3
355	Quantum system compression: A Hamiltonian guided walk through Hilbert space. Physical Review A, 2021, 103, .	2.5	3
356	The Promise of Mutation Resistant Drugs for SARS-CoV-2 That Interdict in the Folding of the Spike Protein Receptor Binding Domain. Covid, 2021, 1, 288-302.	1.5	3
357	Hierarchical fitting and scaling models for rotationally inelastic cross sections. Journal of Chemical Physics, 1989, 90, 1701-1710.	3.0	2
358	Determination of rate constants for butene isomerization by a temporal inversion method. Journal of Chemical Physics, 1997, 107, 2845-2852.	3.0	2
359	Laboratory transferability of optimally shaped laser pulses for quantum control. Journal of Chemical Physics, 2014, 140, 074302.	3.0	2
360	THEORETICAL FOUNDATIONS FOR EXPLORING QUANTUM OPTIMAL CONTROL OF MOLECULES. Advances in Multi-photon Processes and Spectroscopy, 2014, , 1-57.	0.6	2

HERSCHEL A RABITZ

#	Article	IF	CITATIONS
361	Optimal control protocols can be exponentially accelerated by quantum algorithms. , 2016, , .		2
362	Pareto-front shape in multiobservable quantum control. Physical Review A, 2017, 95, .	2.5	2
363	On the fundamental conjecture of HDMR: a Fourier analysis approach. Journal of Mathematical Chemistry, 2017, 55, 632-660.	1.5	2
364	Control landscapes for a class of non-linear dynamical systems: sufficient conditions for the absence of traps. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 335103.	2.1	2
365	Meshless Hermite-HDMR finite difference method for high-dimensional Dirichlet problems. Journal of Mathematical Chemistry, 2019, 57, 1652-1669.	1.5	2
366	Global Sensitivity Analysis with Mixtures: A Generalized Functional ANOVA Approach. Risk Analysis, 2022, 42, 304-333.	2.7	2
367	Identification of Two Early Folding Stage Prion Non-Local Contacts Suggested to Serve as Key Steps in Directing the Final Fold to Be Either Native or Pathogenic. International Journal of Molecular Sciences, 2021, 22, 8619.	4.1	2
368	Protein Folding Interdiction Strategy for Therapeutic Drug Development in Viral Diseases: Ebola VP40 and Influenza A M1. International Journal of Molecular Sciences, 2022, 23, 3906.	4.1	2
369	Stochastic theory of intramolecular vibrational energy redistribution and dissociation in the presence of radiation. Journal of Chemical Physics, 1983, 79, 5396-5413.	3.0	1
370	On the relation between electronic structure and molecular dynamics. Journal of Chemical Physics, 1990, 93, 4192-4210.	3.0	1
371	Display of the flow of energy in molecules. Journal of Computational Chemistry, 1994, 15, 80-89.	3.3	1
372	A probe of dynamical models using functional sensitivity densities with application to He++Ne(2p) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
373	Multidimensional Potential Surfaces from the Direct Inversion of Probability Density and Energy Spectral Dataâ€. Journal of Physical Chemistry B, 2000, 104, 10863-10870.	2.6	1
374	Tying the loop tighter around quantum systems. Journal of Modern Optics, 2003, 50, 2291-2303.	1.3	1
375	OPTIMAL METHODS FOR RE-ORDERING DATA MATRICES IN SYSTEMS BIOLOGY AND DRUG DISCOVERY APPLICATIONS. Biophysical Reviews and Letters, 2008, 03, 19-42.	0.8	1
376	Enhancing molecular discovery using descriptorâ€free rearrangement clustering techniques for sparse data sets. AICHE Journal, 2010, 56, 405-418.	3.6	1
377	PERFECT POPULATION TRANSFER IN PULSE-DRIVEN QUANTUM CHAINS. Journal of Theoretical and Computational Chemistry, 2010, 09, 847-860.	1.8	1
378	Level sets of quantum control landscapes. , 2010, , .		1

#	Article	IF	CITATIONS
379	A perspective on controlling quantum phenomena. Faraday Discussions, 2011, 153, 415.	3.2	1
380	A key bidirectional switching issue in optogenetics emulated with laser dyes to illustrate its mitigation using nonlinear optical tools. Applied Physics Letters, 2021, 118, 024101.	3.3	1
381	Quantum Control Landscapes Beyond the Dipole Approximation: Controllability, Singular Controls, and Resources. Frontiers in Physics, 2021, 9, .	2.1	1
382	Tying the loop tighter around quantum systems. Journal of Modern Optics, 2003, 50, 2291-2303.	1.3	1
383	OPTIMAL METHODS FOR RE-ORDERING DATA MATRICES IN SYSTEMS BIOLOGY AND DRUG DISCOVERY APPLICATIONS. , 2008, , .		1
384	Dual coherent and incoherent two-photon luminescence in single gold nanorods revealed by polarization and time-resolved nonlinear autocorrelation. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1931.	2.1	1
385	The rotation–vibration potential of He–H2 and its connection with physical phenomena. Journal of Chemical Physics, 1991, 94, 7114-7124.	3.0	Ο
386	Quantum Dynamical Studies of the Decomposition of Energetic Materials. Materials Research Society Symposia Proceedings, 1992, 296, 281.	0.1	0
387	A discreteâ€continuum hybrid model for vibrational energy transfer at the gas–solid interface. II. The quantal evolution of coupled localizedâ€collective motions. Journal of Chemical Physics, 1994, 100, 8506-8513.	3.0	Ο
388	Assessing the options for identifying critically important potential surface regions: Applications to nonadiabatic transitions. International Journal of Quantum Chemistry, 1997, 63, 121-131.	2.0	0
389	Optimization of Living Radical Polymerization Through Distributed Control of Energy. Macromolecular Chemistry and Physics, 2001, 202, 2797-2801.	2.2	Ο
390	Parametric equations of motion for the transition operator and the Green's operator. Physical Review A, 2002, 66, .	2.5	0
391	Controlling Molecular Motion: The Molecule Knows Best. ACS Symposium Series, 2002, , 2-15.	0.5	Ο
392	Composition dependent energy band gaps for the ternary alloy Si1â^'xâ^'yGexCy. Physica Status Solidi (B): Basic Research, 2003, 240, 148-152.	1.5	0
393	Control landscapes for observable preparation with open quantum systems. , 2007, , .		Ο
394	On the evolution of laser pulses under a dynamic Quantum Control environment. , 2008, , .		0
395	Development of laboratory and computational techniques for optimal and quantitative understanding of cellular metabolic networks. , 2008, , .		0
396	Controlling quantum systems in the presence of an environment. , 2009, , .		0

#	Article	IF	CITATIONS
397	Hamiltonian Reduction of Quantum Systems Controlled by Pulses. Chinese Journal of Chemical Physics, 2011, 24, 378-382.	1.3	0
398	Control through operators for quantum chemistry. , 2012, , .		0
399	Sampling-based learning control for quantum discrimination and ensemble classification. , 2014, , .		0
400	Numerical meshless solution of high-dimensional sine-Gordon equations via Fourier HDMR-HC approximation. Journal of Mathematical Chemistry, 2019, 57, 1683-1699.	1.5	0
401	Multi-level evolution strategies for high-resolution black-box control. Journal of Heuristics, 2021, 27, 1021.	1.4	0
402	Selective Photo-Excitation of Molecules Enabled by Stimulated Raman Pre-Excitation. Physical Chemistry Chemical Physics, 2022, , .	2.8	0
403	Hitting Times of Some Critical Events in RNA Origins of Life. Life, 2021, 11, 1419.	2.4	0