
Jiangwei Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4517404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Substituted 1â€Hydroxyâ€2â€Naphthaldehydes by Rhodiumâ€Catalyzed Câ^'H Bond Activation and Vinylene Transfer of Enaminones with Vinylene Carbonate. Advanced Synthesis and Catalysis, 2022, 364, 512-517.	4.3	29
2	Synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils. New Journal of Chemistry, 2022, 46, 7329-7333.	2.8	8
3	Direct Synthesis of Alkylthioimidazoles: Oneâ€Pot Threeâ€Component Crossâ€Coupling Mediated by Paired Electrolysis. Advanced Synthesis and Catalysis, 2022, 364, 1677-1682.	4.3	9
4	Ruthenium atalyzed C7â€Formylmethylation or Sequential Acetalization of Indolines with Vinylene Carbonate in Different Solvents. Advanced Synthesis and Catalysis, 2022, 364, 1580-1586.	4.3	18
5	Iridium-catalyzed oxidative coupling and cyclization of NH isoquinolones with olefins leading to isoindolo[2,1-b]isoquinolin-5(7H)-one derivatives. Tetrahedron Letters, 2022, 97, 153779.	1.4	3
6	Controllable cross-coupling of thiophenols with dichloromethane mediated by consecutively paired electrolysis. Green Synthesis and Catalysis, 2022, , .	6.8	2
7	Electrochemical Ammonium Cationâ€Assisted Hydropyridylation of Ketoneâ€Activated Alkenes: Experimental and Computational Mechanistic Studies. Advanced Synthesis and Catalysis, 2022, 364, 845-854.	4.3	13
8	Electrochemical ammonium-cation-assisted pyridylation of inert N-heterocycles via dual-proton-coupled electron transfer. IScience, 2022, 25, 104253.	4.1	6
9	Hydrophosphorylation of electron-deficient alkenes and alkynes mediated by convergent paired electrolysis. Chemical Communications, 2022, 58, 8238-8241.	4.1	12
10	Electrochemical Oxidationâ€Induced Oxyphosphorylation of Alkenes and Alkynes with Water via Hydrogen Atom Transfer. Advanced Synthesis and Catalysis, 2022, 364, 2735-2740.	4.3	13
11	Single-atom-nickel photocatalytic site-selective sulfonation of enamides to access amidosulfones. Green Chemistry, 2021, 23, 2756-2762.	9.0	20
12	Electroreductive C3 Pyridylation of Quinoxalin-2(1 <i>H</i>)-ones: An Effective Way to Access Bidentate Nitrogen Ligands. Organic Letters, 2021, 23, 1081-1085.	4.6	32
13	Synthesis of Polysubstituted Phenols by Rhodium atalyzed Câ^'H/Diazo Coupling and Tandem Annulation. Advanced Synthesis and Catalysis, 2021, 363, 1855-1860.	4.3	15
14	Electrochemicalâ€Induced Hydrogenation of Electronâ€Deficient Internal Olefins and Alkynes with CH ₃ OH as Hydrogen Donor. Advanced Synthesis and Catalysis, 2021, 363, 2104-2109.	4.3	19
15	Electrochemicalâ€Inâ€Situâ€Oxidative Sulfonylation of Phenols with Sulfinic Acids as an Access to Sulfonylated Hydroquinones. Advanced Synthesis and Catalysis, 2021, 363, 3485-3490.	4.3	7
16	Visible-light-promoted cascade cyclization towards benzo[<i>d</i>]imidazo[5,1- <i>b</i>]thiazoles under metal- and photocatalyst-free conditions. Green Chemistry, 2021, 23, 1286-1291.	9.0	19
17	Copper-catalyzed domino synthesis of benzo[<i>d</i>]imidazo[5,1- <i>b</i>][1,3]selenazoles involving sequential intermolecular cycloaddition and intramolecular Ullmann-type C–Se bond formation. Organic Chemistry Frontiers, 2021, 8, 5139-5144.	4.5	12
18	Metal-free electrochemical synthesis of α-ketoamides <i>via</i> decarboxylative coupling of α-keto acids with isocyanides and water. Organic Chemistry Frontiers, 2021, 8, 6508-6514.	4.5	22

JIANGWEI WEN

#	Article	IF	CITATIONS
19	Electrochemicalâ€Induced C(sp 3)â^'H Dehydrogenative Trimerization of Pyrazolones to Tripyrazolones. European Journal of Organic Chemistry, 2021, 2021, 5491-5496.	2.4	4
20	Advances in Electrochemical Hydrogenation Since 2010. Advanced Synthesis and Catalysis, 2021, 363, 5407-5416.	4.3	24
21	Biomimetic photocatalytic sulfonation of alkenes to access β-ketosulfones with single-atom iron site. Green Chemistry, 2020, 22, 230-237.	9.0	56
22	Synthesis of Substituted Naphtho[1,8- <i>bc</i>]thiopyrans by Sulfhydryl-Directed Rhodium-Catalyzed <i>peri</i> -Selective C–H Bond Activation and Cyclization of Naphthalene-1-thiols. Organic Letters, 2020, 22, 7825-7830.	4.6	29
23	Electrochemical-Induced Transfer Hydrogenation of Imidazopyridines with Secondary Amine as Hydrogen Donor. Organic Letters, 2020, 22, 8824-8828.	4.6	25
24	Electrochemical-induced regioselective C-3 thiomethylation of imidazopyridines <i>via</i> a three-component cross-coupling strategy. Green Chemistry, 2020, 22, 1129-1133.	9.0	46
25	A Naphthalimideâ€Based NDâ€Oâ€EAc Photocatalyst for Sulfonation of Alkenes to Access βâ€Ketosulfones Under Visible Light. European Journal of Organic Chemistry, 2020, 2020, 3456-3461.	2.4	15
26	Recent Advances on the Photocatalytic and Electrocatalytic Thiocyanation Reactions. Chinese Journal of Organic Chemistry, 2020, 40, 1117.	1.3	23
27	H ₂ O-controlled selective thiocyanation and alkenylation of ketene dithioacetals under electrochemical oxidation. Green Chemistry, 2019, 21, 3597-3601.	9.0	36
28	Metal-Free Catalytic Synthesis of Thiocarbamates Using Sodium Sulfinates as the Sulfur Source. Journal of Organic Chemistry, 2019, 84, 2976-2983.	3.2	41
29	Low-Pressure Flow Chemistry of CuAAC Click Reaction Catalyzed by Nanoporous AuCu Membrane. ACS Applied Materials & Interfaces, 2018, 10, 25930-25935.	8.0	20
30	Metalâ€Free Direct Alkylation of Ketene Dithioacetals by Oxidative C(sp ²)â~H/C(sp ³)â~H Crossâ€Coupling. Chemistry - A European Journal, 2017, 23, 8814-8817.	3.3	23
31	Electrooxidative Tandem Cyclization of Activated Alkynes with Sulfinic Acids To Access Sulfonated Indenones. Organic Letters, 2017, 19, 3131-3134.	4.6	140
32	Palladium/Copper Co-catalyzed Oxidative C–H/C–H Carbonylation of Diphenylamines: A Way To Access Acridones. Organic Letters, 2017, 19, 94-97.	4.6	54
33	Metal-Free Direct Hydrosulfonylation of Azodicarboxylates with Sulfinic Acids Leading to Sulfonylhydrazine Derivatives. Synthetic Communications, 2015, 45, 1574-1584.	2.1	14
34	Metal-Free Oxidative Spirocyclization of Alkynes with Sulfonylhydrazides Leading to 3-Sulfonated Azaspiro[4,5]trienones. Journal of Organic Chemistry, 2015, 80, 4966-4972.	3.2	125
35	Metalâ€Free Direct Construction of Sulfonamides <i>via</i> lodine―Mediated Coupling Reaction of Sodium Sulfinates and Amines at Room Temperature. Advanced Synthesis and Catalysis, 2015, 357, 987-992.	4.3	85
36	Silver-catalyzed direct spirocyclization of alkynes with thiophenols: a simple and facile approach to 3-thioazaspiro[4,5]trienones. RSC Advances, 2015, 5, 84657-84661.	3.6	57

JIANGWEI WEN

#	Article	IF	CITATIONS
37	Direct difunctionalization of alkynes with sulfinic acids and molecular iodine: a simple and convenient approach to (E)-β-iodovinyl sulfones. RSC Advances, 2015, 5, 4416-4419.	3.6	82
38	Direct and metal-free arylsulfonylation of alkynes with sulfonylhydrazides for the construction of 3-sulfonated coumarins. Chemical Communications, 2015, 51, 768-771.	4.1	181
39	Copper-catalyzed highly selective direct hydrosulfonylation of alkynes with arylsulfinic acids leading to vinyl sulfones. Organic and Biomolecular Chemistry, 2014, 12, 1861-1864.	2.8	97
40	Catalyst-free direct arylsulfonylation of N-arylacrylamides with sulfinic acids: a convenient and efficient route to sulfonated oxindoles. Green Chemistry, 2014, 16, 2988-2991.	9.0	153
41	Iron-catalyzed direct difunctionalization of alkenes with dioxygen and sulfinic acids: a highly efficient and green approach to β-ketosulfones. Organic and Biomolecular Chemistry, 2014, 12, 7678-7681.	2.8	77
42	Copper-catalyzed cyanoalkylarylation of activated alkenes with AIBN: a convenient and efficient approach to cyano-containing oxindoles. RSC Advances, 2014, 4, 48535-48538.	3.6	36
43	Metal-Free Direct Trifluoromethylation of Activated Alkenes with Langlois' Reagent Leading to CF3-Containing Oxindoles. Journal of Organic Chemistry, 2014, 79, 4225-4230.	3.2	123
44	lron-catalyzed three-component tandem process: a novel and convenient synthetic route to quinoline-2,4-dicarboxylates from arylamines, glyoxylic esters, and α-ketoesters. Tetrahedron, 2013, 69, 10747-10751.	1.9	15
45	Copper-catalyzed direct oxysulfonylation of alkenes with dioxygen and sulfonylhydrazides leading to l²-ketosulfones. Chemical Communications, 2013, 49, 10239.	4.1	252
46	Isocyanideâ€Induced Esterification of Sulfinic Acids to Access Sulfinates. Advanced Synthesis and Catalysis, 0, , .	4.3	2