
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4517008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology, 2017, 284, 228-243.	7.3	1,587
2	Radiation Dose Reduction in Chest CT: A Review. American Journal of Roentgenology, 2008, 190, 335-343.	2.2	257
3	Non–Small Cell Lung Cancer: Whole-Body MR Examination for M-Stage Assessment—Utility for Whole-Body Diffusion-weighted Imaging Compared with Integrated FDG PET/CT. Radiology, 2008, 248, 643-654.	7.3	245
4	Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art. European Journal of Radiology, 2017, 86, 297-307.	2.6	222
5	Quantitative assessment of regional pulmonary perfusion in the entire lung using threeâ€dimensional ultrafast dynamic contrastâ€enhanced magnetic resonance imaging: Preliminary experience in 40 subjects. Journal of Magnetic Resonance Imaging, 2004, 20, 353-365.	3.4	189
6	Detection of bone metastases in nonâ€small cell lung cancer patients: Comparison of wholeâ€body diffusionâ€weighted imaging (DWI), wholeâ€body MR imaging without and with DWI, wholeâ€body FDGâ€PET/CT, and bone scintigraphy. Journal of Magnetic Resonance Imaging, 2009, 30, 298-308.	3.4	171
7	Utility of Right Ventricular Free Wall Speckle-Tracking Strain for Evaluation of Right Ventricular Performance in Patients with Pulmonary Hypertension. Journal of the American Society of Echocardiography, 2011, 24, 1101-1108.	2.8	167
8	Solitary Pulmonary Nodules: Potential Role of Dynamic MR Imaging in Management—Initial Experience. Radiology, 2002, 224, 503-511.	7.3	142
9	MR Angiography with Sensitivity Encoding (SENSE) for Suspected Pulmonary Embolism: Comparison with MDCT and Ventilation–Perfusion Scintigraphy. American Journal of Roentgenology, 2004, 183, 91-98.	2.2	121
10	Diffusion-Weighted MRI Versus 18F-FDG PET/CT: Performance as Predictors of Tumor Treatment Response and Patient Survival in Patients With Non–Small Cell Lung Cancer Receiving Chemoradiotherapy. American Journal of Roentgenology, 2012, 198, 75-82.	2.2	119
11	Metastases in Mediastinal and Hilar Lymph Nodes in Patients with Non–Small Cell Lung Cancer: Quantitative and Qualitative Assessment with STIR Turbo Spin-Echo MR Imaging. Radiology, 2004, 231, 872-879.	7.3	118
12	Pulmonary highâ€resolution ultrashort TE MR imaging: Comparison with thinâ€section standard―and lowâ€dose computed tomography for the assessment of pulmonary parenchyma diseases. Journal of Magnetic Resonance Imaging, 2016, 43, 512-532.	3.4	117
13	Differentiation of Malignant and Benign Pulmonary Nodules with Quantitative First-Pass 320–Detector Row Perfusion CT versus FDG PET/CT. Radiology, 2011, 258, 599-609.	7.3	112
14	Primary Pulmonary Hypertension: 3D Dynamic Perfusion MRI for Quantitative Analysis of Regional Pulmonary Perfusion. American Journal of Roentgenology, 2007, 188, 48-56.	2.2	108
15	Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung. Magnetic Resonance in Medicine, 2002, 47, 1139-1144.	3.0	99
16	Functional imaging of the lungs with gas agents. Journal of Magnetic Resonance Imaging, 2016, 43, 295-315.	3.4	98
17	Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology, 2020, 297, 286-301.	7.3	95
18	N Stage Disease in Patients with Non–Small Cell Lung Cancer: Efficacy of Quantitative and Qualitative Assessment with STIR Turbo Spin-Echo Imaging, Diffusion-weighted MR Imaging, and Fluorodeoxyglucose PET/CT. Radiology, 2011, 261, 605-615.	7.3	94

#	Article	IF	CITATIONS
19	Complementary Roles of Whole-Body Diffusion-Weighted MRI and ¹⁸ F-FDG PET: The State of the Art and Potential Applications. Journal of Nuclear Medicine, 2010, 51, 1549-1558.	5.0	92
20	Oxygen-Enhanced MR Ventilation Imaging of the Lung. American Journal of Roentgenology, 2001, 177, 185-194.	2.2	89
21	Dynamic Perfusion MRI Versus Perfusion Scintigraphy: Prediction of Postoperative Lung Function in Patients with Lung Cancer. American Journal of Roentgenology, 2004, 182, 73-78.	2.2	89
22	Variability and Standardization of Quantitative Imaging. Investigative Radiology, 2020, 55, 601-616.	6.2	89
23	Quantitative and qualitative assessment of non-contrast-enhanced pulmonary MR imaging for management of pulmonary nodules in 161 subjects. European Radiology, 2008, 18, 2120-2131.	4.5	88
24	Ultrashort echo time (UTE) MRI of the lung: Assessment of tissue density in the lung parenchyma. Magnetic Resonance in Medicine, 2010, 64, 1491-1498.	3.0	88
25	Oxygen-enhanced Magnetic Resonance Imaging versus Computed Tomography. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 1095-1102.	5.6	87
26	Ultraâ€ s hort echo time (UTE) MR imaging of the lung: Comparison between normal and emphysematous lungs in mutant mice. Journal of Magnetic Resonance Imaging, 2010, 32, 326-333.	3.4	87
27	Multiphase ECG-triggered 3D contrast-enhanced MR angiography: Utility for evaluation of hilar and mediastinal invasion of bronchogenic carcinoma. Journal of Magnetic Resonance Imaging, 2001, 13, 215-224.	3.4	85
28	Wholeâ€body MR imaging vs. FDGâ€PET: Comparison of accuracy of Mâ€stage diagnosis for lung cancer patients. Journal of Magnetic Resonance Imaging, 2007, 26, 498-509.	3.4	84
29	Postoperative Lung Function in Lung Cancer Patients: Comparative Analysis of Predictive Capability of MRI, CT, and SPECT. American Journal of Roentgenology, 2007, 189, 400-408.	2.2	82
30	Radiation dose reduction in chest CT—Review of available options. European Journal of Radiology, 2014, 83, 1953-1961.	2.6	80
31	STIR turbo SE MR imaging vs. coregistered FDGâ€PET/CT: Quantitative and qualitative assessment of Nâ€stage in nonâ€smallâ€cell lung cancer patients. Journal of Magnetic Resonance Imaging, 2007, 26, 1071-1080.	3.4	77
32	Recent technological and application developments in computed tomography and magnetic resonance imaging for improved pulmonary nodule detection and lung cancer staging. Journal of Magnetic Resonance Imaging, 2010, 32, 1353-1369.	3.4	75
33	Comparison of STIR turbo SE imaging and diffusion-weighted imaging of the lung: capability for detection and subtype classification of pulmonary adenocarcinomas. European Radiology, 2010, 20, 790-800.	4.5	72
34	Oxygen-enhanced MR Imaging: Correlation with Postsurgical Lung Function in Patients with Lung Cancer. Radiology, 2005, 236, 704-711.	7.3	71
35	Adaptive Iterative Dose Reduction Using 3D Processing for Reduced- and Low-Dose Pulmonary CT: Comparison With Standard-Dose CT for Image Noise Reduction and Radiological Findings. American Journal of Roentgenology, 2012, 199, W477-W485.	2.2	69
36	Dynamic Contrast-Enhanced CT and MRI for Pulmonary Nodule Assessment. American Journal of Roentgenology, 2014, 202, 515-529.	2.2	69

#	Article	IF	CITATIONS
37	Magnetic Resonance Imaging for Lung Cancer. Journal of Thoracic Imaging, 2013, 28, 138-150.	1.5	68
38	Dynamic Oxygen-Enhanced MRI Versus Quantitative CT: Pulmonary Functional Loss Assessment and Clinical Stage Classification of Smoking-Related COPD. American Journal of Roentgenology, 2008, 190, W93-W99.	2.2	67
39	Prognostic value of dynamic MR imaging for non-small-cell lung cancer patients after chemoradiotherapy. Journal of Magnetic Resonance Imaging, 2005, 21, 775-783.	3.4	66
40	Solitary Pulmonary Nodules: Comparison of Dynamic First-Pass Contrast-enhanced Perfusion Area-Detector CT, Dynamic First-Pass Contrast-enhanced MR Imaging, and FDG PET/CT. Radiology, 2015, 274, 563-575.	7.3	66
41	Three-way Comparison of Whole-Body MR, Coregistered Whole-Body FDG PET/MR, and Integrated Whole-Body FDG PET/CT Imaging: TNM and Stage Assessment Capability for Non–Small Cell Lung Cancer Patients. Radiology, 2015, 275, 849-861.	7.3	66
42	Standard-, Reduced-, and No-Dose Thin-Section Radiologic Examinations: Comparison of Capability for Nodule Detection and Nodule Type Assessment in Patients Suspected of Having Pulmonary Nodules. Radiology, 2017, 284, 562-573.	7.3	66
43	Chemical Exchange Saturation Transfer MR Imaging: Preliminary Results for Differentiation of Malignant and Benign Thoracic Lesions. Radiology, 2016, 279, 578-589.	7.3	63
44	Screening for lung cancer: Does MRI have a role?. European Journal of Radiology, 2017, 86, 353-360.	2.6	62
45	Thin-section multiplanar reformats from multidetector-row CT data: Utility for assessment of regional tumor extent in non-small cell lung cancer. European Journal of Radiology, 2005, 56, 48-55.	2.6	60
46	T2 [*] Measurements of 3-T MRI With Ultrashort TEs: Capabilities of Pulmonary Function Assessment and Clinical Stage Classification in Smokers. American Journal of Roentgenology, 2011, 197, W279-W285.	2.2	60
47	PET/CT versus MRI for diagnosis, staging, and follow-up of lung cancer. Journal of Magnetic Resonance Imaging, 2015, 42, 247-260.	3.4	60
48	Time-resolved contrast-enhanced pulmonary MR angiography using sensitivity encoding (SENSE). Journal of Magnetic Resonance Imaging, 2003, 17, 330-336.	3.4	59
49	Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis. European lournal of Radiology, 2015, 84, 1401-1412.	2.6	59
50	Dynamic MRI, dynamic multidetectorâ€row computed tomography (MDCT), and coregistered 2â€[fluorineâ€18]â€fluoroâ€2â€deoxyâ€Dâ€glucose–positron emission tomography (FDCâ€PET)/CT: Compara of capability for management of pulmonary nodules. Journal of Magnetic Resonance Imaging, 2008, 27, 1284-1295.	tiye study	58
51	Utility of phase contrast MR imaging for assessment of pulmonary flow and pressure estimation in patients with pulmonary hypertension: Comparison with right heart catheterization and echocardiography. Journal of Magnetic Resonance Imaging, 2009, 30, 973-980.	3.4	58
52	Oxygen-enhanced magnetic resonance ventilation imaging of lung. European Journal of Radiology, 2001, 37, 164-171.	2.6	57
53	Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis. European Radiology, 2013, 23, 3509-3516.	4.5	57
54	Differentiation of metastatic versus non-metastatic mediastinal lymph nodes in patients with non-small cell lung cancer using respiratory-triggered short inversion time inversion recovery (STIR) turbo spin-echo MR imaging. European Journal of Radiology, 2002, 44, 216-224.	2.6	55

#	Article	IF	CITATIONS
55	Basics concepts and clinical applications of oxygen-enhanced MR imaging. European Journal of Radiology, 2007, 64, 320-328.	2.6	55
56	Value of diffusion-weighted MR imaging using various parameters for assessment and characterization of solitary pulmonary nodules. European Journal of Radiology, 2015, 84, 509-515.	2.6	55
57	Morphologic Characterization of Pulmonary Nodules With Ultrashort TE MRI at 3T. American Journal of Roentgenology, 2018, 210, 1216-1225.	2.2	52
58	MR imaging of lung cancer. European Journal of Radiology, 2002, 44, 172-181.	2.6	51
59	Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging. Radiology, 2022, 303, 373-381.	7.3	51
60	Comparative evaluation of newly developed model-based and commercially available hybrid-type iterative reconstruction methods and filter back projection method in terms of accuracy of computer-aided volumetry (CADv) for low-dose CT protocols in phantom study. European Journal of Radiology, 2016, 85, 1375-1382.	2.6	50
61	Contrast-enhanced MR perfusion imaging and MR angiography: utility for management of pulmonary arteriovenous malformations for embolotherapy. European Journal of Radiology, 2002, 41, 136-146.	2.6	49
62	Coregistered Ventilation and Perfusion SPECT Using Krypton-81m and Tc-99mâ^'Labeled Macroaggregated Albumin With Multislice CT. Academic Radiology, 2007, 14, 830-838.	2.5	49
63	Diffusion-weighted MR imaging vs. multi-detector row CT: Direct comparison of capability for assessment of management needs for anterior mediastinal solitary tumors. European Journal of Radiology, 2014, 83, 835-842.	2.6	48
64	Emphysema Quantification by Low-Dose CT: Potential Impact of Adaptive Iterative Dose Reduction Using 3D Processing. American Journal of Roentgenology, 2012, 199, 595-601.	2.2	47
65	Assessment of bolus injection protocol with appropriate concentration for quantitative assessment of pulmonary perfusion by dynamic contrast-enhanced MR imaging. Journal of Magnetic Resonance Imaging, 2007, 25, 55-65.	3.4	45
66	State-of-the-art radiological techniques improve the assessment of postoperative lung function in patients with non-small cell lung cancer. European Journal of Radiology, 2011, 77, 97-104.	2.6	45
67	Dynamic perfusion MRI: Capability for evaluation of disease severity and progression of pulmonary arterial hypertension in patients with connective tissue disease. Journal of Magnetic Resonance Imaging, 2008, 28, 887-899.	3.4	44
68	Compressed sensing and deep learning reconstruction for women's pelvic MRI denoising: Utility for improving image quality and examination time in routine clinical practice. European Journal of Radiology, 2021, 134, 109430.	2.6	44
69	Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: Pulmonary functional loss assessment and clinical stage classification of asthmatics. European Journal of Radiology, 2011, 77, 85-91.	2.6	43
70	Ventilation/perfusion imaging of the lung using ultraâ€ s hort echo time (UTE) MRI in an animal model of pulmonary embolism. Journal of Magnetic Resonance Imaging, 2011, 34, 539-546.	3.4	43
71	CT hepatic perfusion measurement: Comparison of three analytic methods. European Journal of Radiology, 2012, 81, 2075-2079.	2.6	43
72	Imaging of Pulmonary Hypertension in Adults: A Position Paper from the Fleischner Society. Radiology, 2021, 298, 531-549.	7.3	43

#	Article	IF	CITATIONS
73	Perfusion measurement of the whole upper abdomen of patients with and without liver diseases: Initial experience with 320-detector row CT. European Journal of Radiology, 2012, 81, 2470-2475.	2.6	42
74	Dynamic MR perfusion imaging: Capability for quantitative assessment of disease extent and prediction of outcome for patients with acute pulmonary thromboembolism. Journal of Magnetic Resonance Imaging, 2010, 31, 1081-1090.	3.4	41
75	Computer-aided detection of lung nodules on multidetector CT in concurrent-reader and second-reader modes: A comparative study. European Journal of Radiology, 2013, 82, 1332-1337.	2.6	39
76	Dynamic MR imaging: value of differentiating subtypes of peripheral small adenocarcinoma of the lung. European Journal of Radiology, 2004, 52, 144-150.	2.6	36
77	Comparison of Quantitatively Analyzed Dynamic Area-Detector CT Using Various Mathematic Methods With FDG PET/CT in Management of Solitary Pulmonary Nodules. American Journal of Roentgenology, 2013, 200, W593-W602.	2.2	35
78	MRI for solitary pulmonary nodule and mass assessment: Current state of the art. Journal of Magnetic Resonance Imaging, 2018, 47, 1437-1458.	3.4	35
79	Radiation dose reduction techniques for chest CT: Principles and clinical results. European Journal of Radiology, 2019, 111, 93-103.	2.6	35
80	Outracing Lung Signal Decay – Potential of Ultrashort Echo Time MRI. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2019, 191, 415-423.	1.3	35
81	Pulmonary MR imaging with ultra-short TEs: Utility for disease severity assessment of connective tissue disease patients. European Journal of Radiology, 2013, 82, 1359-1365.	2.6	33
82	Low dose chest CT protocol (50 mAs) as a routine protocol for comprehensive assessment of intrathoracic abnormality. European Journal of Radiology Open, 2016, 3, 86-94.	1.6	33
83	Pulmonary MR angiography and perfusion imaging—A review of methods and applications. European Journal of Radiology, 2017, 86, 361-370.	2.6	33
84	Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D) Improves Chest CT Image Quality and Reduces Radiation Exposure. PLoS ONE, 2014, 9, e105735.	2.5	33
85	Magnetic Resonance Imaging of Pediatric Lung Parenchyma, Airways, Vasculature, Ventilation, and Perfusion. Radiologic Clinics of North America, 2013, 51, 555-582.	1.8	30
86	Emphysema Quantification Using Ultralow-Dose CT With Iterative Reconstruction and Filtered Back Projection. American Journal of Roentgenology, 2016, 206, 1184-1192.	2.2	30
87	Standard-dose vs. low-dose CT protocols in the evaluation of localized lung lesions: Capability for lesion characterization—iLEAD study. European Journal of Radiology Open, 2016, 3, 67-73.	1.6	30
88	Asthma: Comparison of Dynamic Oxygen-enhanced MR Imaging and Quantitative Thin-Section CT for Evaluation of Clinical Treatment. Radiology, 2014, 273, 907-916.	7.3	29
89	New Applications of Magnetic Resonance Imaging for Thoracic Oncology. Seminars in Respiratory and Critical Care Medicine, 2014, 35, 027-040.	2.1	29
90	Dynamic contrast-enhanced perfusion area detector CT for non-small cell lung cancer patients: Influence of mathematical models on early prediction capabilities for treatment response and recurrence after chemoradiotherapy. European Journal of Radiology, 2016, 85, 176-186.	2.6	29

#	Article	IF	CITATIONS
91	Pulmonary Functional Imaging: Part 2—State-of-the-Art Clinical Applications and Opportunities for Improved Patient Care. Radiology, 2021, 299, 524-538.	7.3	29
92	Pulmonary Functional Imaging: Part 1—State-of-the-Art Technical and Physiologic Underpinnings. Radiology, 2021, 299, 508-523.	7.3	29
93	Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications. Diagnostic and Interventional Radiology, 2016, 22, 407-421.	1.5	29
94	Oxygen-enhanced MRI for patients with connective tissue diseases: Comparison with thin-section CT of capability for pulmonary functional and disease severity assessment. European Journal of Radiology, 2014, 83, 391-397.	2.6	28
95	Pulmonary 3 T MRI with ultrashort TEs: Influence of ultrashort echo time interval on pulmonary functional and clinical stage assessments of smokers. Journal of Magnetic Resonance Imaging, 2014, 39, 988-997.	3.4	28
96	Update of MR Imaging for Evaluation of Lung Cancer. Radiologic Clinics of North America, 2018, 56, 437-469.	1.8	28
97	Non-small cell carcinoma: Comparison of postoperative intra- and extrathoracic recurrence assessment capability of qualitatively and/or quantitatively assessed FDG-PET/CT and standard radiological examinations. European Journal of Radiology, 2011, 79, 473-479.	2.6	27
98	Comparison of capability of dynamic O2-enhanced MRI and quantitative thin-section MDCT to assess COPD in smokers. European Journal of Radiology, 2012, 81, 1068-1075.	2.6	27
99	Amide proton transferâ€weighted imaging to differentiate malignant from benign pulmonary lesions: Comparison with diffusionâ€weighted imaging and FDGâ€PET/CT. Journal of Magnetic Resonance Imaging, 2018, 47, 1013-1021.	3.4	27
100	Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging. Journal of Thoracic Imaging, 2016, 31, 215-227.	1.5	25
101	Pulmonary Magnetic Resonance Imaging for Airway Diseases. Journal of Thoracic Imaging, 2011, 26, 301-316.	1.5	24
102	Contrastâ€enhanced multidetectorâ€row computed tomography vs. Timeâ€resolved magnetic resonance angiography vs. contrastâ€enhanced perfusion MRI: Assessment of treatment response by patients with inoperable chronic thromboembolic pulmonary hypertension. Journal of Magnetic Resonance Imaging, 2012, 36, 612-623.	3.4	24
103	Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: Its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT. European Journal of Radiology, 2017, 86, 83-91.	2.6	24
104	Functional MR Imaging of the Lung. Magnetic Resonance Imaging Clinics of North America, 2008, 16, 275-289.	1.1	23
105	Diffusion-weighted MR imaging using FASE sequence for 3T MR system: Preliminary comparison of capability for N-stage assessment by means of diffusion-weighted MR imaging using EPI sequence, STIR FASE imaging and FDG PET/CT for non-small cell lung cancer patients. European Journal of Radiology, 2015, 84, 2321-2331.	2.6	23
106	Comparison of Diagnostic Accuracy for TNM Stage Among Whole-Body MRI and Coregistered PET/MRI Using 1.5-T and 3-T MRI Systems and Integrated PET/CT for Non–Small Cell Lung Cancer. American Journal of Roentgenology, 2020, 215, 1191-1198.	2.2	23
107	Use of 3D Adaptive Raw-Data Filter in CT of the Lung: Effect on Radiation Dose Reduction. American Journal of Roentgenology, 2008, 191, W167-W174.	2.2	22
108	Assessment of Pulmonary Hypertension. Academic Radiology, 2011, 18, 437-453.	2.5	22

#	Article	IF	CITATIONS
109	Comparison of the utility of whole-body MRI with and without contrast-enhanced Quick 3D and double RF fat suppression techniques, conventional whole-body MRI, PET/CT and conventional examination for assessment of recurrence in NSCLC patients. European Journal of Radiology, 2013, 82, 2018-2027.	2.6	22
110	Magnetic resonance angiography for the primary diagnosis of pulmonary embolism: A review from the international workshop for pulmonary functional imaging. World Journal of Radiology, 2018, 10, 52-64.	1.1	22
111	Single-shot half-fourier RARE sequence with ultra-short inter-echo spacing for lung imaging. Journal of Magnetic Resonance Imaging, 2004, 20, 336-339.	3.4	21
112	Unenhanced and Contrast-Enhanced MR Angiography and Perfusion Imaging for Suspected Pulmonary Thromboembolism. American Journal of Roentgenology, 2017, 208, 517-530.	2.2	21
113	Effect of Reconstruction Parameters on the Quantitative Analysis of Chest Computed Tomography. Journal of Thoracic Imaging, 2019, 34, 92-102.	1.5	21
114	Quantitative and Qualitative Assessments of Lung Destruction and Pulmonary Functional Loss from Reduced-Dose Thin-Section CT in Pulmonary Emphysema Patients. Academic Radiology, 2010, 17, 163-168.	2.5	20
115	State-of-the-Art Imaging of the Lung for Connective Tissue Disease (CTD). Current Rheumatology Reports, 2015, 17, 69.	4.7	20
116	Diagnostic performance of different imaging modalities in the assessment of distant metastasis and local recurrence of tumor in patients with nonâ€small cell lung cancer. Journal of Magnetic Resonance Imaging, 2017, 46, 1707-1717.	3.4	20
117	Xenon-enhanced CT using subtraction CT: Basic and preliminary clinical studies for comparison of its efficacy with that of dual-energy CT and ventilation SPECT/CT to assess regional ventilation and pulmonary functional loss in smokers. European Journal of Radiology, 2017, 86, 41-51.	2.6	20
118	Machine learning for lung CT texture analysis: Improvement of inter-observer agreement for radiological finding classification in patients with pulmonary diseases. European Journal of Radiology, 2021, 134, 109410.	2.6	20
119	Emphysema quantification on low-dose CT using percentage of low-attenuation volume and size distribution of low-attenuation lung regions: Effects of adaptive iterative dose reduction using 3D processing. European Journal of Radiology, 2014, 83, 2268-2276.	2.6	19
120	Whole-Body MRI: Comparison of Its Capability for TNM Staging of Malignant Pleural Mesothelioma With That of Coregistered PET/MRI, Integrated FDG PET/CT, and Conventional Imaging. American Journal of Roentgenology, 2019, 212, 311-319.	2.2	19
121	Pulmonary MR angiography with contrast agent at 4 Tesla: A preliminary result. Magnetic Resonance in Medicine, 2001, 46, 1028-1030.	3.0	18
122	3D automatic exposure control for 64-detector row CT: Radiation dose reduction in chest phantom study. European Journal of Radiology, 2011, 77, 522-527.	2.6	18
123	Capability of abdominal 320-detector row CT for small vasculature assessment compared with that of 64-detector row CT. European Journal of Radiology, 2011, 80, 219-223.	2.6	18
124	JOURNAL CLUB: Comparison of Assessment of Preoperative Pulmonary Vasculature in Patients With Non–Small Cell Lung Cancer by Non–Contrast- and 4D Contrast-Enhanced 3-T MR Angiography and Contrast-Enhanced 64-MDCT. American Journal of Roentgenology, 2014, 202, 493-506.	2.2	18
125	Deep learning-based and hybrid-type iterative reconstructions for CT: comparison of capability for quantitative and qualitative image quality improvements and small vessel evaluation at dynamic CE-abdominal CT with ultra-high and standard resolutions. Japanese Journal of Radiology, 2021, 39, 186-197.	2.4	18
126	Low dose multi-detector CT of the chest (iLEAD Study): Visual ranking of different simulated mAs levels. European Journal of Radiology, 2010, 73, 428-433.	2.6	16

#	Article	IF	CITATIONS
127	Objective evaluation of the correction by non-rigid registration of abdominal organ motion in low-dose 4D dynamic contrast-enhanced CT. Physics in Medicine and Biology, 2012, 57, 1701-1715.	3.0	16
128	Oxygen-Enhanced MRI, Thin-Section MDCT, and Perfusion SPECT/CT: Comparison of Clinical Implications to Patient Care for Lung Volume Reduction Surgery. American Journal of Roentgenology, 2012, 199, 794-802.	2.2	16
129	3D ECG- and respiratory-gated non-contrast-enhanced (CE) perfusion MRI for postoperative lung function prediction in non-small-cell lung cancer patients: A comparison with thin-section quantitative computed tomography, dynamic CE-perfusion MRI, and perfus. Journal of Magnetic Resonance Imaging, 2015, 42, 340-353.	3.4	16
130	Efficacy of Ultrashort Echo Time Pulmonary MRI for Lung Nodule Detection and Lung-RADS Classification. Radiology, 2022, 302, 697-706.	7.3	16
131	Iterative reconstruction technique vs filter back projection: utility for quantitative bronchial assessment on low-dose thin-section MDCT in patients with/without chronic obstructive pulmonary disease. European Radiology, 2014, 24, 1860-1867.	4.5	15
132	Iterative reconstruction for quantitative computed tomography analysis of emphysema: consistent results using different tube currents. International Journal of COPD, 2015, 10, 321.	2.3	15
133	Lung Cancer Assessment Using MR Imaging. Magnetic Resonance Imaging Clinics of North America, 2015, 23, 231-244.	1.1	15
134	Comparison of fat suppression capability for chest MR imaging with Dixon, SPAIR and STIR techniques at 3 Tesla MR system. Magnetic Resonance Imaging, 2018, 47, 89-96.	1.8	15
135	Differentiation of Benign from Malignant Pulmonary Nodules by Using a Convolutional Neural Network to Determine Volume Change at Chest CT. Radiology, 2020, 296, 432-443.	7.3	15
136	Overview of MRI for pulmonary functional imaging. British Journal of Radiology, 2022, 95, 20201053.	2.2	15
137	Computer-aided detection of lung nodules on multidetector row computed tomography using three-dimensional analysis of nodule candidates and their surroundings. Radiation Medicine, 2008, 26, 562-569.	0.8	14
138	3D lung motion assessments on inspiratory/expiratory thin-section CT: Capability for pulmonary functional loss of smoking-related COPD in comparison with lung destruction and air trapping. European Journal of Radiology, 2016, 85, 352-359.	2.6	14
139	Securing safe and informative thoracic CT examinations—Progress of radiation dose reduction techniques. European Journal of Radiology, 2017, 86, 313-319.	2.6	14
140	Comparison of computer-aided detection (CADe) capability for pulmonary nodules among standard-, reduced- and ultra-low-dose CTs with and without hybrid type iterative reconstruction technique. European Journal of Radiology, 2018, 100, 49-57.	2.6	14
141	Complementary regional heterogeneity information from COPD patients obtained using oxygen-enhanced MRI and chest CT. PLoS ONE, 2018, 13, e0203273.	2.5	14
142	Measurement Variability in Treatment Response Determination for Non–Small Cell Lung Cancer. Journal of Thoracic Imaging, 2019, 34, 103-115.	1.5	14
143	Co-registered perfusion SPECT/CT: Utility for prediction of improved postoperative outcome in lung volume reduction surgery candidates. European Journal of Radiology, 2010, 74, 465-472.	2.6	13
144	Compressed sensing and parallel imaging accelerated T2 FSE sequence for head and neck MR imaging: Comparison of its utility in routine clinical practice. European Journal of Radiology, 2021, 135, 109501.	2.6	13

#	Article	IF	CITATIONS
145	Structural basis for pulmonary functional imaging. European Journal of Radiology, 2001, 37, 143-154.	2.6	12
146	Hybrid Type iterative reconstruction method vs. filter back projection method: Capability for radiation dose reduction and perfusion assessment on dynamic first-pass contrast-enhanced perfusion chest area-detector CT. European Journal of Radiology, 2016, 85, 164-175.	2.6	12
147	Comparison of Interobserver Agreement and Diagnostic Accuracy for IASLC/ITMIG Thymic Epithelial Tumor Staging Among Co-registered FDG-PET/MRI, Whole-body MRI, Integrated FDG-PET/CT, and Conventional Imaging Examination with and without Contrast Media Administrations. Academic Radiology, 2018	2.5	12
148	Solitary pulmonary nodule: Comparison of quantitative capability for differentiation and management among dynamic CE-perfusion MRI at 3â€T system, dynamic CE-perfusion ADCT and FDG-PET/CT. European Journal of Radiology, 2019, 115, 22-30.	2.6	12
149	Synopsis from Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders. Chest, 2021, 159, 492-495.	0.8	12
150	<scp>3D Oxygenâ€Enhanced MRI</scp> at <scp>3T MR</scp> System: Comparison With <scp>Thinâ€Section CT</scp> of Quantitative Capability for Pulmonary Functional Loss Assessment and Clinical Stage Classification of <scp>COPD</scp> in Smokers. Journal of Magnetic Resonance Imaging, 2021, 53, 1042-1051.	3.4	12
151	Small Cell Lung Cancer Staging: Prospective Comparison of Conventional Staging Tests, FDG PET/CT, Whole-Body MRI, and Coregistered FDG PET/MRI. American Journal of Roentgenology, 2022, 218, 899-908.	2.2	12
152	Potential contribution of multiplanar reconstruction (MPR) to computer-aided detection of lung nodules on MDCT. European Journal of Radiology, 2012, 81, 366-370.	2.6	11
153	Emphysema Quantification by Combining Percentage and Size Distribution of Low-Attenuation Lung Regions. American Journal of Roentgenology, 2014, 202, W453-W458.	2.2	11
154	Adaptive iterative dose reduction 3D (AIDR 3D) vs. filtered back projection: radiation dose reduction capabilities of wide volume and helical scanning techniques on area-detector CT in a chest phantom study. Acta Radiologica, 2016, 57, 684-690.	1.1	11
155	Newly developed artificial intelligence algorithm for COVID-19 pneumonia: utility of quantitative CT texture analysis for prediction of favipiravir treatment effect. Japanese Journal of Radiology, 2022, 40, 800-813.	2.4	11
156	Recent Advances in Magnetic Resonance Perfusion Imaging of the Lung. Topics in Magnetic Resonance Imaging, 2003, 14, 245-251.	1.2	10
157	Paired Inspiratory/Expiratory Volumetric CT and Deformable Image Registration for Quantitative and Qualitative Evaluation of Airflow Limitation in Smokers with or without COPD. Academic Radiology, 2015, 22, 330-336.	2.5	10
158	Influence of inversion pulse type in assessing lungâ€oxygenâ€enhancement by centricallyâ€reordered nonâ€sliceâ€selective inversionâ€recovery halfâ€Fourier singleâ€shot turbo spinâ€echo (HASTE) sequence. Journal of Magnetic Resonance Imaging, 2007, 26, 1133-1138.	3.4	9
159	Effect of reconstruction algorithm on image quality and identification of ground-glass opacities and partly solid nodules on low-dose thin-section CT: Experimental study using chest phantom. European Journal of Radiology, 2010, 74, 500-507.	2.6	9
160	Quantitative bronchial luminal volumetric assessment of pulmonary function loss by thin-section MDCT in pulmonary emphysema patients. European Journal of Radiology, 2012, 81, 384-388.	2.6	9
161	Dynamic Contrast-Enhanced Perfusion Area-Detector CT: Preliminary Comparison of Diagnostic Performance for N Stage Assessment With FDG PET/CT in Non–Small Cell Lung Cancer. American Journal of Roentgenology, 2017, 209, W253-W262.	2.2	9
162	Comparison of Xenon-Enhanced Area-Detector CT and Krypton Ventilation SPECT/CT for Assessment of Pulmonary Functional Loss and Disease Severity in Smokers. American Journal of Roentgenology, 2018, 210, W45-W53.	2.2	9

#	Article	IF	CITATIONS
163	Effects of acquisition method and reconstruction algorithm for CT number measurement on standard-dose CT and reduced-dose CT: a QIBA phantom study. Japanese Journal of Radiology, 2019, 37, 399-411.	2.4	9
164	Comparison of utility of deep learning reconstruction on 3D MRCPs obtained with three different k-space data acquisitions in patients with IPMN. European Radiology, 2022, 32, 6658-6667.	4.5	9
165	Hepatic computed tomography perfusion: comparison of maximum slope and dual-input single-compartment methods. Japanese Journal of Radiology, 2010, 28, 714-719.	2.4	8
166	Quantitative lung perfused blood volume imaging on dual-energy CT: capability for quantitative assessment of disease severity in patients with acute pulmonary thromboembolism. Acta Radiologica, 2015, 56, 284-293.	1.1	8
167	Factors associated with silent cerebral events during atrial fibrillation ablation in patients on uninterrupted oral anticoagulation. Journal of Cardiovascular Electrophysiology, 2020, 31, 2889-2897.	1.7	8
168	Influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation and nodules on 16- and 64-detector row CT systems: Experimental study using chest phantom. European Journal of Radiology, 2007, 64, 406-413.	2.6	7
169	State-of-the-art MR Imaging for Thoracic Diseases. Magnetic Resonance in Medical Sciences, 2022, 21, 212-234.	2.0	7
170	Machine learning for lung texture analysis on thin-section CT: Capability for assessments of disease severity and therapeutic effect for connective tissue disease patients in comparison with expert panel evaluations. Acta Radiologica, 2022, 63, 1363-1373.	1.1	7
171	A comparison of axial versus coronal image viewing in computer-aided detection of lung nodules on CT. Japanese Journal of Radiology, 2015, 33, 76-83.	2.4	6
172	Gadolinium-Based Blood Volume Mapping From MRI With Ultrashort TE Versus CT and SPECT for Predicting Postoperative Lung Function in Patients With Non–Small Cell Lung Cancer. American Journal of Roentgenology, 2019, 212, 57-66.	2.2	6
173	Dynamic Contrast-enhanced Area-detector CT vs Dynamic Contrast-enhanced Perfusion MRI vs FDG-PET/CT: Comparison of Utility for Quantitative Therapeutic Outcome Prediction for NSCLC Patients Undergoing Chemoradiotherapy. Magnetic Resonance in Medical Sciences, 2020, 19, 29-39.	2.0	6
174	Computed <scp>DWI</scp> MRI Results in Superior Capability for <scp>N‣tage</scp> Assessment of <scp>Non‣mall</scp> Cell Lung Cancer Than That of Actual <scp>DWI</scp> , <scp>STIR</scp> Imaging, and <scp>FDGâ€PET</scp> / <scp>CT</scp> . Journal of Magnetic Resonance Imaging, 2023, 57, 259-272.	3.4	5
175	Comparison of lung CT number and airway dimension evaluation capabilities of ultra-high-resolution CT, using different scan modes and reconstruction methods including deep learning reconstruction, with those of multi-detector CT in a QIBA phantom study. European Radiology, 2023, 33, 368-379.	4.5	5
176	Oxygen-enhanced lung magnetic resonance imaging: influence of inversion pulse slice selectivity on inversion recovery half-Fourier single-shot turbo spin-echo signal. Japanese Journal of Radiology, 2011, 29, 244-250.	2.4	4
177	Reduced-dose chest CT with 3D automatic exposure control vs. standard chest CT: Quantitative assessment of emphysematous changes in smokers' lung parenchyma. European Journal of Radiology, 2012, 81, 1330-1334.	2.6	4
178	Airflow Limitation in Chronic Obstructive Pulmonary Disease. Academic Radiology, 2014, 21, 1262-1267.	2.5	4
179	Performance Comparison Between18F-FDG PET/CT Plus Brain MRI and Conventional Staging Plus Brain MRI in Staging of Small Cell Lung Carcinoma. American Journal of Roentgenology, 2018, 211, 185-192.	2.2	4
180	Association of Focal Radiation Dose Adjusted on Cross Sections with Subsolid Nodule Visibility and Quantification on Computed Tomography Images Using AIDR 3D. Academic Radiology, 2018, 25, 1156-1166.	2.5	4

#	Article	IF	CITATIONS
181	Comparison of capability of abdominal 320-detector row CT and of 16-detector row CT for small vasculature assessment. Kobe Journal of Medical Sciences, 2011, 56, E154-61.	0.2	4
182	Magnetic resonance imaging for lung cancer: a state-of-the-art review. Precision and Future Medicine, 2022, 6, 49-77.	1.6	4
183	Novel Intraoperative Navigation Using Ultra-High-Resolution CT in Robot-Assisted Partial Nephrectomy. Cancers, 2022, 14, 2047.	3.7	4
184	Wash-in/wash-out phase xenon-enhanced area-detector CT (ADCT): utility for regional ventilation, pulmonary functional loss and clinical stage evaluations of smokers. Acta Radiologica, 2019, 60, 1619-1628.	1.1	3
185	Inspiratory/expiratory xenon-enhanced area-detector CT: Capability for quantitative assessment of lung ventilation changes in surgically treated non-small cell lung cancer patients. European Journal of Radiology, 2021, 136, 109574.	2.6	2
186	Diffuse Periairway Thickening in Patients With Mikulicz Disease. Journal of Thoracic Imaging, 2008, 23, 213-215.	1.5	1
187	Challenges of Using 3 T MR Systems and Whole-Body MRI for Lung Imaging. Medical Radiology, 2016, , 479-505.	0.1	1
188	Effect of Bronchial Thermoplasty on Air Trapping Assessed by Xenon Ventilation Computed Tomography. Internal Medicine, 2021, 60, 2027-2032.	0.7	1
189	Myoinositol to Total Choline Ratio in Glioblastomas as a Potential Prognostic Factor in Preoperative Magnetic Resonance Spectroscopy. Neurologia Medico-Chirurgica, 2021, 61, 453-460.	2.2	1
190	Functional Assessment of Lung Cancer and Nodules. Medical Radiology, 2021, , 259-297.	0.1	1
191	Future of Pulmonary Functional Imaging. Medical Radiology, 2021, , 337-360.	0.1	1
192	Editorial for " <scp>MRI</scp> Radiomicsâ€Based Nomogram From Primary Tumor for Pretreatment Prediction of Peripancreatic Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma: A Multicenter Study― Journal of Magnetic Resonance Imaging, 2022, 55, 840-841.	3.4	1
193	Response to RMED-D-22–00,258.R1. Japanese Journal of Radiology, 0, , .	2.4	1
194	A Bayesian estimation method for cerebral blood flow measurement by area-detector CT perfusion imaging. Neuroradiology, 2023, 65, 65-75.	2.2	1
195	Contrast-enhanced multidetector-row computed tomography vs. time-resolved magnetic resonance angiography vs. contrast-enhanced perfusion MRI: Assessment of treatment response by patients with inoperable chronic thromboembolic pulmonary hypertension. Journal of Magnetic Resonance Imaging, 2012. 36. spcone-spcone.	3.4	0
196	A Case of Multiple Sclerosing Pneumocytomas With Calcifications. Journal of Thoracic Imaging, 2021, Publish Ahead of Print, W109-W114.	1.5	0
197	New CT and MR Imaging of Lung Cancer. Japanese Journal of Lung Cancer, 2005, 45, 63-73.	0.1	О